Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628767

RESUMO

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and a leading cause of cancer worldwide. Histone deacetylases (HDACs), which regulate cell proliferation and survival, are associated with the development and progression of cancer. Moreover, HDAC inhibitors are promising therapeutic targets, with five HDAC inhibitors approved for cancer treatment to date. However, their safety profile necessitates the exploration of well-tolerated HDAC inhibitors that can be used in cancer therapeutic strategies. In this study, the pan-HDAC inhibitor MPT0G236 reduced the viability and inhibited the proliferation of human colorectal cancer cells, and normal human umbilical vein endothelial cells (HUVECs) showed reduced sensitivity. These findings indicated that MPT0G236 specifically targeted malignant tumor cells. Notably, MPT0G236 significantly inhibited the activities of HDAC1, HDAC2, and HDAC3, Class I HDACs, as well as HDAC6, a Class IIb HDAC, at low nanomolar concentrations. Additionally, it promoted the accumulation of acetyl-α-tubulin and acetyl-histone H3 in HCT-116 and HT-29 cells in a concentration-dependent manner. Furthermore, MPT0G236 treatment induced G2/M cell cycle arrest in CRC cells by initially regulating the levels of cell-cycle-related proteins, such as p-MPM2; specifically reducing p-cdc2 (Y15), cyclin B1, and cdc25C levels; and subsequently inducing apoptosis through the caspase-dependent pathways and PARP activation. Our findings demonstrate that MPT0G236 exhibits significant anticancer activity in human colorectal cancer cells.


Assuntos
Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Apoptose , Proliferação de Células , Proteínas de Ciclo Celular , Histona Desacetilases , Células Endoteliais da Veia Umbilical Humana , Neoplasias Colorretais/tratamento farmacológico
3.
Bioorg Chem ; 121: 105675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182882

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is considered a promising therapeutic target for acute myeloid leukemia (AML) in the clinical. However, monotherapy with FLT3 inhibitor is usually accompanied by drug resistance. Dual inhibitors might be therapeutically beneficial to patients with AML due to their ability to overcome drug resistance. Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) phosphorylate eukaryotic translation initiation factor 4E (eIF4E), which brings together the RAS/RAF/ERK and PI3K/AKT/mTOR oncogenic pathways. Therefore, dual inhibition of FLT3 and MNK2 might have an additive effect against AML. Herein, a structure-based virtual screening approach was performed to identify dual inhibitors of FLT3 and MNK2 from the ChemDiv database. Compound K783-0308 was identified as a dual inhibitor of FLT3 and MNK2 with IC50 values of 680 and 406 nM, respectively. In addition, the compound showed selectivity for both FLT3 and MNK2 in a panel of 82 kinases. The structure-activity relationship analysis and common interactions revealed interactions between K783-0308 analogs and FLT3 and MNK2. Furthermore, K783-0308 inhibited MV-4-11 and MOLM-13 AML cell growth and induced G0/G1 cell cycle arrest. Taken together, the dual inhibitor K783-0308 showed promising results and can be potentially optimized as a lead compound for AML treatment.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases
4.
Cell Biosci ; 11(1): 53, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726836

RESUMO

BACKGROUND: The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS: EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvß3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.

5.
J Nat Prod ; 84(1): 1-10, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33393294

RESUMO

Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis and a high degree of relapse seen in patients. Overexpression of FMS-like tyrosine kinase 3 (FLT3) is associated with up to 70% of AML patients. Wild-type FLT3 induces proliferation and inhibits apoptosis in AML cells, while uncontrolled proliferation of FLT3 kinase activity is also associated with FLT3 mutations. Therefore, inhibiting FLT3 activity is a promising AML therapy. Flavonoids are a group of phytochemicals that can target protein kinases, suggesting their potential antitumor activities. In this study, several plant-derived flavonoids have been identified with FLT3 inhibitory activity. Among these compounds, compound 40 (5,7,4'-trihydroxy-6-methoxyflavone) exhibited the most potent inhibition against not only FLT3 (IC50 = 0.44 µM) but also FLT3-D835Y and FLT3-ITD mutants (IC50 = 0.23 and 0.39 µM, respectively). The critical interactions between the FLT3 binding site and the compounds were identified by performing a structure-activity relationship analysis. Furthermore, the results of cellular assays revealed that compounds 28, 31, 32, and 40 exhibited significant cytotoxicity against two human AML cell lines (MOLM-13 and MV-4-11), and compounds 31, 32, and 40 resulted in cell apoptosis and G0/G1 cell cycle arrest. Collectively, these flavonoids have the potential to be further optimized as FLT3 inhibitors and provide valuable chemical information for the development of new AML drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Antineoplásicos/química , Humanos , Leucemia Mieloide Aguda/genética , Inibidores de Proteínas Quinases/química , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/farmacologia
7.
J Nat Prod ; 83(10): 2967-2975, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33026809

RESUMO

Excessive eIF4E phosphorylation by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNK1 and MNK2; collectively, MNKs) has been associated with oncogenesis. The overexpression of eIF4E in acute myeloid leukemia (AML) is related to cancer cell growth and survival. Thus, the inhibition of MNKs and eIF4E phosphorylation are potential therapeutic strategies for AML. Herein, a structure-based virtual screening approach was performed to identify potential MNK inhibitors from natural products. Three flavonoids, apigenin, hispidulin, and luteolin, showed MNK2 inhibitory activity with IC50 values of 308, 252, and 579 nM, respectively. A structure-activity relationship analysis was performed to disclose the molecular interactions. Furthermore, luteolin exhibited substantial inhibitory efficacy against MNK1 (IC50 = 179 nM). Experimental results from cellular assays showed that hispidulin and luteolin inhibited the growth of MOLM-13 and MV4-11 AML cells by downregulating eIF4E phosphorylation and arresting the cell cycle at the G0/G1 phase. Therefore, hispidulin and luteolin showed promising results as lead compounds for the potential treatment for AML.


Assuntos
Flavonoides , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda , Proteínas Serina-Treonina Quinases , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade
11.
BMC Pharmacol Toxicol ; 21(1): 21, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178737

RESUMO

BACKGROUND: Despite the fact that histone deacetylase (HDAC) inhibitors have been tested to treat various cardiovascular diseases, the effects of selective HDAC6 inhibitor ACY1215 on infarct size during cardiac ischemia-reperfusion (IR) injury still remain unknown. In the present study we aimed to investigate the effects of ACY1215 on infarct size in rats with cardiac IR injury, as well as to examine the association between HDAC6 inhibitors and the gene expression of hypoxia inducible factor-1α (HIF-1α), a key regulator of cellular responses to hypoxia. METHODS: By using computational analysis of high-throughput expression profiling dataset, the association between HDAC inhibitors (pan-HDAC inhibitors panobinostat and vorinostat, and HDAC6 inhibitor ISOX) and their effects on HIF-1α gene-expression were evaluated. The male Wistar rats treated with ligation of left coronary artery followed by reperfusion were used as a cardiac IR model. ACY1215 (50 mg/kg), pan-HDAC inhibitor MPT0E028 (25 mg/kg), and vehicle were intraperitoneally injected within 5 min before reperfusion. The infarct size in rat myocardium was determined by 2,3,5-triphenyltetrazolium chloride staining. The serum levels of transforming growth factor-ß (TGF-ß) and C-reactive protein (CRP) were also determined. RESULTS: The high-throughput gene expression assay showed that treatment of ISOX was associated with a more decreased gene expression of HIF-1α than that of panobinostat and vorinostat. Compared to control rats, ACY1215-treated rats had a smaller infarct size (49.75 ± 9.36% vs. 19.22 ± 1.70%, p < 0.05), while MPT0E028-treated rats had a similar infarct size to control rats. ACY-1215- and MPT0E028-treated rats had a trend in decreased serum TGF-ß levels, but not statistically significant. ACY1215-treated rats also had higher serum CRP levels compared to control rats (641.6 µg/mL vs. 961.37 ± 64.94 µg/mL, p < 0.05). CONCLUSIONS: Our research indicated that HDAC6 inhibition by ACY1215 might reduce infarct size in rats with cardiac IR injury possibly through modulating HIF-1α expression. TGF-ß and CRP should be useful biomarkers to monitor the use of ACY1215 in cardiac IR injury.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Pirimidinas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Proteína C-Reativa/análise , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Pirimidinas/farmacologia , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Crescimento Transformador beta/sangue
12.
Eur J Med Chem ; 190: 112086, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058238

RESUMO

This study reports the synthesis of a series of 2-aroylisoindoline hydroxamic acids employing N-benzyl, long alkyl chain and acrylamide units as diverse linkers. In-vitro studies led to the identification of N-benzyl linker-bearing compound (10) and long chain linker-containing compound (17) as dual selective HDAC6/HSP90 inhibitors. Compound 17 displays potent inhibition of HDAC6 isoform (IC50 = 4.3 nM) and HSP90a inhibition (IC50 = 46.8 nM) along with substantial cell growth inhibitory effects with GI50 = 0.76 µM (lung A549) and GI50 = 0.52 µM (lung EGFR resistant H1975). Compound 10 displays potent antiproliferative activity against lung A549 (GI50 = 0.37 µM) and lung H1975 cell lines (GI50 = 0.13 µM) mediated through selective HDAC6 inhibition (IC50 = 33.3 nM) and HSP90 inhibition (IC50 = 66 nM). In addition, compound 17 also modulated the expression of signatory biomarkers associated with HDAC6 and HSP90 inhibition. In the in vivo efficacy evaluation in human H1975 xenografts, 17 induced slightly remarkable suppression of tumor growth both in monotherapy as well as the combination therapy with afatinib (20 mg/kg). Moreover, compound 17 could effectively reduce programmed death-ligand 1 (PD-L1) expression in IFN-γ treated lung H1975 cells in a dose dependent manner suggesting that dual inhibition of HDAC6 and HSP90 can modulate immunosuppressive ability of tumor area.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Isoindóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Isoindóis/síntese química , Isoindóis/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Theranostics ; 9(22): 6676-6689, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588243

RESUMO

Tissue inhibitors of metalloproteinase 3 (TIMP3) are a major endogenous inhibitor of matrix metalloproteinase (MMPs) that inhibit tumor growth, invasion, metastasis and angiogenesis. In this study, we found that TIMP3 expression is associated with positive prognosis of colorectal cancer (CRC) clinicopathologically. Therefore, we developed a series of arylsulfonamide derivatives as TIMP3 inducers in order to define potential colorectal cancer therapeutic agent. Among these, MPT0B390 was selected for anti-tumor, anti-metastasis, and anti-angiogenesis property determination. Methods: The relationship between TIMP3 expression and clinical pathological features in colorectal patients and cell lines were determined by immunohistochemistry, bioinformatics analysis and western blotting. The anti-tumor function was validated by using MTT, apoptosis pathway detection and in vivo xenograft model for tumor growth inhibition determination. The anti-metastatic function was validated using a transwell migration assay, and using in vivo lung metastasis and liver metastasis models. The mechanism of MPT0B390-induced TIMP3 expression was further tested using qPCR and Chromatin IP assay. The anti-angiogenesis function was examined by using transwell migration assay, and in vivo Matrigel plug assay. Results: After screening candidate compounds, we identified MPT0B390 as an effective inducer of TIMP3. We showed that MPT0B390 induces TIMP3 expression significantly and inhibits CRC cell growth in vitro and in vivo. By inducing TIMP3 expression, MPT0B390 can also exert its anti-metastasis effect to inhibit CRC cell migration and invasion and downregulates migration markers such as uPA, uPAR, and c-Met. Subsequent Chromatin immunoprecipitation assay revealed that MPT0B390 can significantly inhibit EZH2 expression as well as its binding to TIMP3 promoter region to regulate TIMP3 induction. In addition to the anti-tumor and anti-metastasis capability, MPT0B390 can also induce TIMP3 expression in endothelial cells to inhibit tumor angiogenesis. Conclusion: These data suggest the potential therapeutic applications of the TIMP3 inducer, MPT0B390, for colorectal cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Indóis/farmacologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Idoso , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/química , Sulfonatos de Arila/química , Sulfonatos de Arila/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Regiões Promotoras Genéticas , Inibidor Tecidual de Metaloproteinase-3/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Clin Med ; 8(5)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083544

RESUMO

The chemokines CXCL9 and CCL20 have been reported to be associated with ventricular dysfunction. This study was aimed to investigate the effects of CXCL9/CCL20 on cardiac fibrosis following myocardial infarction (MI). Blood samples of patients with MI were obtained to determine the serum CXCL9, CCL20, tumor necrosis factor-α (TNF-α), and transforming growth factor-ß (TGF-ß). The expression of CXCL9 and CCL20 in hypoxia-incubated H9c2 cells and TNF-α/TGF-ß-activated peripheral blood mononuclear cells (PBMCs) were examined. The experimental MI of rats was produced by the intraperitoneal injection of isoproterenol (ISO) (85 mg/kg/day) for two consecutive days. The growth and migration of CXCL9/CCL20-incubated cardiac fibroblasts in vitro were evaluated. TNF-α/TGF-ß-activated PBMCs showed an enhanced expression of CXCL9 and CCL20, while hypoxic H9c2 cells did not. Patients with MI had significantly enhanced levels of serum TGF-ß and CXCL9 compared to healthy subjects. ISO-treated rats had increased serum CXCL9 levels and marked cardiac fibrosis compared to control rats. The trend of increased serum CCL20 in patients with MI and ISO-treated rats was not significant. CXCL9-incubated cardiac fibroblasts showed enhanced proliferation and migration. The findings of this study suggest that an enhanced expression of CXCL9 following MI might play a role in post-MI cardiac fibrosis by activating cardiac fibroblasts.

16.
Front Pharmacol ; 9: 1379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564118

RESUMO

The JAK2/STAT signaling pathway mediates cytokine receptor signals that are involved in cell growth, survival and homeostasis. JAK2 is a member of the Janus kinase (JAK) family and aberrant JAK2/STAT is involved with various diseases, making the pathway a therapeutic target. The similarity between the ATP binding site of protein kinases has made development of specific inhibitors difficult. Current JAK2 inhibitors are not selective and produce unwanted side effects. It is thought that increasing selectivity of kinase inhibitors may reduce the side effects seen with current treatment options. Thus, there is a great need for a selective JAK inhibitor. In this study, we identified a JAK2 specific inhibitor. We first identified key pharmacological interactions in the JAK2 binding site by analyzing known JAK2 inhibitors. Then, we performed structure-based virtual screening and filtered compounds based on their pharmacological interactions and identified compound NSC13626 as a potential JAK2 inhibitor. Results of enzymatic assays revealed that against a panel of kinases, compound NSC13626 is a JAK2 inhibitor and has high selectivity toward the JAK2 and JAK3 isozymes. Our cellular assays revealed that compound NSC13626 inhibits colorectal cancer cell (CRC) growth by downregulating phosphorylation of STAT3 and arresting the cell cycle in the S phase. Thus, we believe that compound NSC13626 has potential to be further optimized as a selective JAK2 drug.

17.
Eur J Med Chem ; 150: 667-677, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29567459

RESUMO

A series of 1-aroylindoline-hydroxamic acids have been synthesized in the present study. The results of the biological evaluation led to the identification of compound 12 as dual HDAC6/HSP90 inhibitor. Compound 12 displayed striking inhibitory effects towards the HDAC6 isoform and HSP 90 protein with IC50 values of 1.15 nM (HDAC6) and 46.3 nM (HSP90). Compound 12 also exhibited 113, 139 and 246 fold higher selectivity for HDAC6 over HDAC 1, HDAC 3 and HDAC 8 isoforms and was endowed with significant cytotoxic effects with GI50 values ranging 1.04-1.61 µM against lung A549, colorectal HCT116, leukemia HL60, and EGFR T790M mutant lung H1975 cell lines. Another interesting finding of the study was substantial cytotoxic effects of compounds particularly against lung H1975 (NSCLC) cell lines with IC50 = 0.26 µM which may be mediated through HSP90 inhibition. Compound 8 as such was devoid of HDAC inhibitory activity.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 140: 84-91, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28923389

RESUMO

A series of 1,4-naphthoquinones (10a-10q) were synthesized and evaluated for anticancer activity. Compound 10e was identified as an inhibitor of Itch, a HECT domain-E3 ligase. In an evaluation of in vivo efficacy, 10e exhibited remarkable anticancer activity with TGI values of 98.3% and 100% at 25 mg/kg and 50 mg/kg orally daily, respectively, against human RPMI-8226 multiple myeloma xenograft. Treatment with 10e also showed a decrease of Itch level in human RPMI-8226 multiple myeloma cells. Thus 10e is a lead compound for further development of inhibitors targeting E3 ligase for treatment of multiple myeloma.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Naftoquinonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Mieloma Múltiplo/patologia , Naftoquinonas/síntese química , Naftoquinonas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Proteínas Repressoras , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases
19.
Eur J Med Chem ; 134: 13-23, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28395150

RESUMO

A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 µM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.


Assuntos
Acrilamidas/química , Acrilamidas/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Acrilamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Masculino , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 7: 46134, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387249

RESUMO

Recent studies have revealed that cardiac glycosides, such as digitalis and digoxin, have anticancer activity and may serve as lead compounds for the development of cancer treatments. The poor prognosis of hepatocellular carcinoma (HCC) patients reflects the development of resistance to current chemotherapeutic agents, highlighting the need for discovering new small-molecule therapeutics. Here, we found that lanatoside C, an anti-arrhythmic agent extracted from Digitalis lanata, inhibited the growth of HCC cells and dramatically decreased tumor volume as well as delayed tumor growth without obvious body weight loss. Moreover, lanatoside C triggered mitochondrial membrane potential (MMP) loss, activation of caspases and translocation of apoptosis-inducing factor (AIF) into the nucleus, which suggests that lanatoside C induced apoptosis through both caspase-dependent and -independent pathways. Furthermore, we discovered that lanatoside C activated protein kinase delta (PKCδ) via Thr505 phosphorylation and subsequent membrane translocation. Inhibition of PKCδ reversed lanatoside C-induced MMP loss and apoptosis, confirming that lanatoside C caused apoptosis through PKCδ activation. We also found that the AKT/mTOR pathway was negatively regulated by lanatoside C through PKCδ activation. In conclusion, we provide the first demonstration that the anticancer effects of lanatoside C are mainly attributable to PKCδ activation.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Glicosídeos Cardíacos/farmacologia , Lanatosídeos/farmacologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Proteína Quinase C-delta/metabolismo , Animais , Glicosídeos Cardíacos/química , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Lanatosídeos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos SCID , Proteínas Mitocondriais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA