Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ACS Sens ; 9(5): 2421-2428, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38644577

RESUMO

A core-shell nanostructure of gold nanoparticles@covalent organic framework (COF) loaded with palladium nanoparticles (AuNPs@COF-PdNPs) was designed for the rapid monitoring of catalytic reactions with surface-enhanced Raman spectroscopy (SERS). The nanostructure was prepared by coating the COF layer on AuNPs and then in situ synthesizing PdNPs within the COF shell. With the respective SERS activity and catalytic performance of the AuNP core and COF-PdNPs shell, the nanostructure can be directly used in the SERS study of the catalytic reaction processes. It was shown that the confinement effect of COF resulted in the high dispersity of PdNPs and outstanding catalytic activity of AuNPs@COF-PdNPs, thus improving the reaction rate constant of the AuNPs@COF-PdNPs-catalyzed hydrogenation reduction by 10 times higher than that obtained with Au/Pd NPs. In addition, the COF layer can serve as a protective shell to make AuNPs@COF-PdNPs possess excellent reusability. Moreover, the loading of PdNPs within the COF layer was found to be in favor of avoiding intermediate products to achieve a high total conversion rate. AuNPs@COF-PdNPs also showed great catalytic activities toward the Suzuki-Miyaura coupling reaction. Taken together, the proposed core-shell nanostructure has great potential in monitoring and exploring catalytic processes and interfacial reactions.


Assuntos
Ouro , Nanopartículas Metálicas , Paládio , Análise Espectral Raman , Ouro/química , Análise Espectral Raman/métodos , Paládio/química , Nanopartículas Metálicas/química , Catálise , Estruturas Metalorgânicas/química , Propriedades de Superfície , Hidrogenação
2.
Biosens Bioelectron ; 250: 116054, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295581

RESUMO

Hydrogen sulfide (H2S), an important gas signal molecule, participates in intercellular signal transmission and plays a considerable role in physiology and pathology. However, in-situ monitoring of H2S level during the processes of material transport between cells remains considerably challenging. Herein, a cell membrane-targeted surface-enhanced Raman scattering (SERS) nanoprobe was designed to quantitatively detect H2S secreted from living cells. The nanoprobes were fabricated by assembling cholesterol-functionalized DNA strands and dithiobis(phenylazide) (DTBPA) molecules on core-shell gold nanostars embedded with 4-mercaptoacetonitrile (4-MBN) (AuNPs@4-MBN@Au). Thus, three functions including cell-membrane targeted via cholesterol, internal standard calibration, and responsiveness to H2S through reduction of azide group in DTBPA molecules were integrated into the nanoprobes. In addition, the nanoprobes can quickly respond to H2S within 90 s and sensitively, selectively, and reliably detect H2S with a limit of detection as low as 37 nM due to internal standard-assisted calibration and reaction specificity. Moreover, the nanoprobes can effectively target on cell membrane and realize SERS visualization of dynamic H2S released from HeLa cells. By employing the proposed approach, an intriguing phenomenon was observed: the other two major endogenous gas transmitters, carbon monoxide (CO) and nitric oxide (NO), exhibited opposite effect on H2S production in living cells stimulated by related gas release molecules. In particular, the introduction of CO inhibited the generation of H2S in HeLa cells, while NO promoted its output. Thus, the nanoprobes can provide a robust method for investigating H2S-related extracellular metabolism and intercellular signaling transmission.


Assuntos
Técnicas Biossensoriais , Sulfeto de Hidrogênio , Nanopartículas Metálicas , Humanos , Sulfeto de Hidrogênio/metabolismo , Células HeLa , Análise Espectral Raman/métodos , Ouro , Óxido Nítrico , Membrana Celular/metabolismo , Colesterol
3.
Angew Chem Int Ed Engl ; 62(44): e202311002, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37714815

RESUMO

Artificially performing chemical reactions in living biosystems to attain various physiological aims remains an intriguing but very challenging task. In this study, the Schiff base reaction was conducted in cells using Sc(OTf)3 as a catalyst, enabling the in situ synthesis of a hollow covalent organic polymer (HCOP) without external stimuli. The reversible Schiff base reaction mediated intracellular Oswald ripening endows the HCOP with a spherical, hollow porous structure and a large specific surface area. The intracellularly generated HCOP reduced cellular motility by restraining actin polymerization, which consequently induced mitochondrial deactivation, apoptosis, and necroptosis. The presented intracellular synthesis system inspired by the Schiff base reaction has strong potential to regulate cell fate and biological functions, opening up a new strategic possibility for intervening in cellular behavior.


Assuntos
Polímeros , Bases de Schiff , Bases de Schiff/química
4.
Anal Chem ; 94(41): 14280-14289, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36201600

RESUMO

The redox homeostasis in living cells is greatly crucial for maintaining the redox biological function, whereas accurate and dynamic detection of intracellular redox states still remains challenging. Herein, a reversible surface-enhanced Raman scattering (SERS) nanosensor based on covalent organic frameworks (COFs) was prepared to dynamically monitor the redox processes in living cells. The nanosensor was fabricated by modifying the redox-responsive Raman reporter molecule, 2-Mercaptobenzoquione (2-MBQ), on the surface of gold nanoparticles (AuNPs), followed by the in situ coating of COFs shell. 2-MBQ molecules can repeatedly and quickly undergo reduction and oxidation when successively treated with ascorbic acid (AA) and hypochlorite (ClO-) (as models of reductive and oxidative species, respectively), which resulted in the reciprocating changes of SERS spectra at 900 cm-1. The construction of the COFs shell provided the nanosensor with great stability and anti-interference capability, thus reliably visualizing the dynamics of intracellular redox species like AA and ClO- by SERS nanosensor. Taken together, the proposed SERS strategy opens up the prospects to investigate the signal transduction pathways and pathological processes related with redox dynamics.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Ácido Ascórbico , Ouro , Ácido Hipocloroso , Oxirredução , Análise Espectral Raman/métodos
5.
ACS Omega ; 7(42): 37221-37228, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312358

RESUMO

Arrangements of hydroxyl groups on graphene sheets were systematically investigated using density functional theory calculations that included van der Waals interactions. Results show that hydroxyl groups tend to gather at para-positions on graphene sheets to generate perfect ring-like hexahydroxyl group adsorption. The close proximity of hydroxyl groups is in good agreement with the experimental separation between unoxidized, aromatic and oxidized, saturated regions in graphene oxide. The orientation of hydrogen atoms in hydroxyl groups creates both O-H···O and O-H···π hydrogen bonds. Calculations also indicated that the binding energy per hydroxyl group follows a logarithmic function with respect to the number of hydroxyl groups. Besides, the opening band gap was observed for several derivatives, and the relationship between the band gap and O/C ratio was found to be nonmonotonic. Analysis of the density of states showed that bands around the Fermi levels of derivatives between graphene and hydroxyl groups are mainly composed of 2p z orbitals of carbon and oxygen atoms.

6.
J Comput Chem ; 32(6): 1065-81, 2011 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21387334

RESUMO

This study investigates the adsorption and reactions of H(2)O(2) on TiO(2) anatase (101) and rutile (110) surfaces by first-principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H(2)O(2) and its fragments on both surfaces are analyzed. It is found that H(2)O(2) , H(2)O, and HO preferentially adsorb at the Ti(5c) site, meanwhile HOO, O, and H preferentially adsorb at the (O(2c))(Ti(5c)), (Ti(5c))(2), and O(2c) sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO(2) and the hydroxylated TiO(2), are produced with the H(2)O(2) dehydration and deoxidation, respectively. The formation of main products, H(2)O(g) and the 1/3 ML oxygen covered TiO(2) surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H(2)O(2) dehydration processes have been predicted to be 6.65 × 10(-27) T(4.38) exp(-0.14 kcal mol(-1)/RT) and 3.18 × 10(-23) T(5.60) exp(-2.92 kcal mol(-1)/RT) respectively, in units of cm(3) molecule(-1) s(-1).


Assuntos
Peróxido de Hidrogênio/química , Teoria Quântica , Titânio/química , Adsorção , Propriedades de Superfície
7.
Huan Jing Ke Xue ; 27(7): 1373-6, 2006 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16881312

RESUMO

Sorption behavior of p-nitrophenol by sediment in the presence of both cetylpyridinium chloride (CPC) and Pb(NO3)2 were investigated. The concurrence of Pb(NO3)2 inhibited the enhancement of sorption induced by CPC. The removal effect of pnitrophenol from sediment by compounding of CPC and Pb(NO3)2 presented antagonistic effect. At a given concentration of CPC, the antagonistic effect increased with increasing of the initial concentration of Pb(NO3)2. The antagonistic effect was also dependent on CPC concentrations. At the initial concentration below 3000 mg/L(the equilibrium concentration was below CMC), the antagonistic effect was especially significant. With the increase of the concentration of CPC, the antagonistic effect decreased gradually. Especially at the higher concentration above CMC, the effect went to be an independent effect just induced by CPC. In addition, the study also indicate that Pb2+ and CPC may not compete for the same adsorption sites.


Assuntos
Cetilpiridínio/química , Sedimentos Geológicos/química , Chumbo/química , Nitratos/química , Nitrofenóis/análise , Poluentes Químicos da Água/análise , Adsorção , Nitrofenóis/química , Tensoativos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA