RESUMO
Utilizing rare earth doped ceria in solid oxide cells (SOCs) engineering is indeed a strategy aimed at enhancing the electrochemical devices' durability and activity. Particularly, Gd-doped ceria (GDC) is actively used for barrier layer and catalytic additives in solid oxide fuel cells (SOFCs). In this study, experiments are conducted with La-doped CeO2 (LDC), in which the Ce sites are predominantly occupied by La, to prevent the formation of the Ce-Zr solid solution. This LDC is comparably used as a functional interlayer between the electrolyte and cathode if sintered at lower temperatures to avoid La2Zr2O7 impurity. In addition, the high substitution of La3+ into the ceria lattice improves the oxygen non-stoichiometry of LDC, leading to accelerated electrochemical high performance by the additional role of LDC for oxygen supplier capacitance at high current operation. Thus, it is confirmed that the improved SOFC high performance is achieved at the maximum power density (MPD) of ≈2.15 W cm-2 at 800 °C when the optimized LDC buffer layer is hired at the anode-supported typed-Samsung's SOFC by lowering the sintering temperature to prevent LDC's impurity reaction.
RESUMO
Exsolution of metal nanoparticles (NPs) on perovskite oxides has been demonstrated as a reliable strategy for producing catalyst-support systems. Conventional exsolution requires high temperatures for long periods of time, limiting the selection of support materials. Plasma direct exsolution is reported at room temperature and atmospheric pressure of Ni NPs from a model A-site deficient perovskite oxide (La0.43Ca0.37Ni0.06Ti0.94O2.955). Plasma exsolution is carried out within minutes (up to 15 min) using a dielectric barrier discharge configuration both with He-only gas as well as with He/H2 gas mixtures, yielding small NPs (<30 nm diameter). To prove the practical utility of exsolved NPs, various experiments aimed at assessing their catalytic performance for methanation from synthesis gas, CO, and CH4 oxidation are carried out. Low-temperature and atmospheric pressure plasma exsolution are successfully demonstrated and suggest that this approach could contribute to the practical deployment of exsolution-based stable catalyst systems.
RESUMO
Bimetallic catalysts combining precious and earth-abundant metals in well designed nanoparticle architectures can enable cost efficient and stable heterogeneous catalysis. Here, we present an interaction-driven in-situ approach to engineer finely dispersed Ni decorated Pt nanoparticles (1-6 nm) on perovskite nanofibres via reduction at high temperatures (600-800 oC). Deposition of Pt (0.5 wt%) enhances the reducibility of the perovskite support and promotes the nucleation of Ni cations via metal-support interaction, thereafter the Ni species react with Pt forming alloy nanoparticles, with the combined processes yielding smaller nanoparticles that either of the contributing processes. Tuneable uniform Pt-Ni nanoparticles are produced on the perovskite surface, yielding reactivity and stability surpassing 1 wt.% Pt/γ-Al2O3 catalysts for CO oxidation. This approach heralds the possibility of in-situ fabrication of supported bimetallic nanoparticles with engineered compositional distributions and performance.
RESUMO
Highly efficient coelectrolysis of CO2/H2O into syngas (a mixture of CO/H2), and subsequent syngas conversion to fuels and value-added chemicals, is one of the most promising alternatives to reach the corner of zero carbon strategy and renewable electricity storage. This research reviews the current state-of-the-art advancements in the coelectrolysis of CO2/H2O in solid oxide electrolyzer cells (SOECs) to produce the important syngas intermediate. The overviews of the latest research on the operating principles and thermodynamic and kinetic models are included for both oxygen-ion- and proton-conducting SOECs. The advanced materials that have recently been developed for both types of SOECs are summarized. It later elucidates the necessity and possibility of regulating the syngas ratios (H2:CO) via changing the operating conditions, including temperature, inlet gas composition, flow rate, applied voltage or current, and pressure. In addition, the sustainability and widespread application of SOEC technology for the conversion of syngas is highlighted. Finally, the challenges and the future research directions in this field are addressed. This review will appeal to scientists working on renewable-energy-conversion technologies, CO2 utilization, and SOEC applications. The implementation of the technologies introduced in this review offers solutions to climate change and renewable-power-storage problems.
RESUMO
Perovskites are an important class of oxygen evolution reaction (OER) catalysts due to highly tunable compositions and adaptable characteristics. However, perovskite-based catalysts can have limited atom utilization efficiency due to large particle size, resulting in low mass activity. Herein, Cobalt nanoparticles are exsolved from La0.2+2x Ca0.7-2x Ti1-x Cox O3 perovskite and applied in OER. Upon reduction in the 5% H2 /N2 atmosphere at 800 °C for 2 h, the Co exsolved perovskite catalyst (R-LCTCo0.11) exhibits optimal OER performance. The mass activity of R-LCTCo0.11 reaches ≈1700 mA mg-1 at an overpotential of 450 mV, which is 17 times and 3 times higher than that of LCTCo0.11 (97 mA mg-1 ) and R-Mix (560 mA mg-1 ) catalysts respectively, surpassing the benchmark catalyst RuO2 (42.7 mA mg-1 of oxide at η = 470 mV). Electrochemical impedance spectroscopy (EIS) data reveals that R-LCTCo0.11 has the lowest charge transfer resistance (Rct = 58 Ω), demonstrating the highest catalytic and kinetic activity for OER. Furthermore, this catalyst shows high stability during an accelerated durability test of 10 h electrolysis and 1000 cycles cyclic voltammetry (CV). This work demonstrates that nanoparticle exsolution from a doped perovskite is an effective strategy for improving the atom utilization efficiency in OER.
RESUMO
Plastic pollution is an increasing environmental concern. Pollutants such as microplastics (< 5 mm) and pharmaceuticals often co-exist in the aquatic environment. The current study aimed to elucidate the interaction of pharmaceuticals with microplastics and ascertain how the process of photo-oxidation of microplastics affected the adsorption of the pharmaceuticals. To this end, a mixture containing ibuprofen, carbamazepine, fluoxetine, venlafaxine and ofloxacin (16 µmol L-1 each) was placed in contact with one of six either virgin or aged microplastic types. The virgin microplastics were acquired commercially and artificially aged in the laboratory. Polypropylene, polyethylene, polyethylene terephthalate, polyamide, polystyrene, and polyvinyl chloride microparticles at two sizes described as small (D50 < 35 µm) and large (D50 95-157 µm) were evaluated. Results demonstrated that the study of virgin particles may underestimate the adsorption of micropollutants onto microplastics. For virgin particles, only small microparticles of polypropylene, polyethylene, polyvinyl chloride, and both sizes of polyamide adsorbed pharmaceuticals. Aging the microplastics increased significantly the adsorption of pharmaceuticals by microplastics. Fluoxetine adsorbed onto all aged microplastics, from 18 % (large polyethylene terephthalate) to 99 % (small polypropylene). The current investigation highlights the potential of microplastics to act as a vector for pharmaceuticals in freshwater, especially after aging.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polipropilenos , Polietilenotereftalatos , Nylons , Adsorção , Cloreto de Polivinila , Fluoxetina , Poluentes Químicos da Água/análise , Água Doce , Polietileno , Preparações FarmacêuticasRESUMO
Nitrogen-hydrogen based alkali and alkaline earth metal compounds have recently received a substantial amount of attention as co-catalysts for heterogeneous mild condition ammonia synthesis (MCAS). The incorporation of these materials has been shown to result in positive reaction orders with respect to H2, solving the issue of hydrogen poisoning, e.g., the occupation of the majority of transition metal (TM) active sites by H-adatoms due to the significantly faster kinetics of H2 dissociation as compared to N2. The mechanism that underlies this is thought to be the incorporation (sinking) of H-adatoms from the surface of TMs to the bulk of the N-H phases. Thus, the slower kinetics of N2 dissociation no longer inhibit ammonia synthesis, and improvements in the kinetics dissociation for TM can be realised without consideration for which specific gases are affected (e.g., the circumventing of scaling relations). The ability to transport H-adatoms from the surface of TM is therefore of fundamental importance to the properties of the N-H co-catalyst implying that the conductivity of these species towards H and N ions, and NHx species, is of utmost importance. As such, we investigate two N-H systems that can be prepared by reacting the respective hydrides with nitrogen resulting in nitride-hydride and imide forms for Ca and Ba, respectively. These have both been previously shown to promote ammonia synthesis and here we investigate their conductive properties, and discuss these systems in the context of activity and stability of the total system with specific focus on the rise of secondary anion species, and the presence of barium in the system.
RESUMO
Electrochemical and catalytic conversion to and from ammonia is strongly enhanced by appropriate choice of hydrogen conducting electrolyte or substrate. Here we explore both protonic and hydride ionic conductors in relation to ammonia conversions. Protonic conductors tend to require too high a temperature to achieve sufficient hydrogen flux for ammonia synthesis as thermal decomposition competes strongly. Conversely protonic conductors are well suited to direct ammonia fuel cell use. Hydride ions can be very mobile and are strongly reducing. Alkaline hydride lattices can exhibit facile H and N mobility and exchange and offer a very promising basis for ammonia conversion and synthesis.
RESUMO
Microplastic research has gained attention due to the increased detection of microplastics (<5 mm size) in the aquatic environment. Most laboratory-based research of microplastics is performed using microparticles from specific suppliers with either superficial or no characterisation performed to confirm the physico-chemical information detailed by the supplier. The current study has selected 21 published adsorption studies to evaluate how the microplastics were characterised by the authors prior experimentation. Additionally, six microplastic types described as 'small' (10-25 µm) and 'large' (100 µm) were commercially acquired from a single supplier. A detailed characterisation was performed using Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction, differential scanning calorimetry, scanning electron microscopy, particle size analysis, and N2-Brunauer, Emmett and Teller adsorption-desorption surface area analysis. The size and the polymer composition of some of the material provided by the supplier was inconsistent with the analytical data obtained. FT-IR spectra of small polypropylene particles indicated either oxidation of the particles or the presence of a grafting agent which was absent in the large particles. A wide range of sizes for the small particles was observed: polyethylene (0.2-549 µm), polyethylene terephthalate (7-91 µm) and polystyrene (1-79 µm). Small polyamide (D50 75 µm) showed a greater median particle size and similar size distribution when compared to large polyamide (D50 65 µm). Moreover, small polyamide was found to be semi-crystalline, while the large polyamide displayed an amorphous form. The type of microplastic and the size of the particles are a key factor in determining the adsorption of pollutants and subsequent ingestion by aquatic organisms. Acquiring uniform particle sizes is challenging, however based on this study, characterisation of any materials used in microplastic-related experiments is critical to ensure reliable interpretation of results, thereby providing a better understanding of the potential environmental consequences of the presence of microplastics in aquatic ecosystems.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Ecossistema , Nylons , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Active bi-metallic nanoparticles are of key importance in catalysis and renewable energy. Here, the in situ formation of bi-metallic nanoparticles is investigated by exsolution on 200 nm diameter perovskite fibers. The B-site co-doped perovskite fibers display a high degree of exsolution, decorated with NiCo or Ni3 Fe bi-metallic nanoparticles with average diameter about 29 and 35 nm, respectively. The perovskite fibers are utilized as cathode materials in pure CO2 electrolysis cells due to their redox stability in the CO/CO2 atmosphere. After in situ electrochemical switching, the nanoparticles exsolved from the perovskite fiber demonstrate an enhanced performance in pure CO2 electrolysis. At 900 °C, the current density of solid oxide electrolysis cell (SOEC) with 200 µm YSZ electrolyte supported NiFe doped perovskite fiber anode reaches 0.75 Acm-2 at 1.6 V superior to the NiCo doped perovskite fiber anode (about 1.5 times) in pure CO2 . According to DFT calculations (PBE-D3 level) the superior CO2 conversion on NiFe compared to NiCo bi-metallic species is related to an enhanced driving force for C-O cleavage under formation of CO chemisorbed on the nanoparticle and a reduced binding energy of CO required to release this product.
RESUMO
Cyanobacteria and their toxins are a threat to drinking water safety as increasingly cyanobacterial blooms (mass occurrences) occur in lakes and reservoirs all over the world. Photocatalytic removal of cyanotoxins by solar light active catalysts is a promising way to purify water at relatively low cost compared to modifying existing infrastructure. We have established a facile and low-cost method to obtain TiO2 and g-C3N4 coated floating photocatalysts using recycled glass beads. g-C3N4 coated and TiO2+g-C3N4 co-coated beads were able to completely remove microcystin-LR in artificial fresh water under both natural and simulated solar light irradiation without agitation in less than 2 h. TiO2 coated beads achieved complete removal within 8 h of irradiation. TiO2+g-C3N4 beads were more effective than g-C3N4 beads as demonstrated by the increase reaction rate with reaction constants, 0.0485 min-1 compared to 0.0264 min-1 respectively, with TiO2 alone found to be considerably slower 0.0072 min-1. g-C3N4 based photocatalysts showed a similar degradation pathway to TiO2 based photocatalysts by attacking the C6-C7 double bond on the Adda side chain.
Assuntos
Cianobactérias , Purificação da Água , Toxinas de Cianobactérias , Luz , Purificação da Água/métodosRESUMO
Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO2 immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir. The treatment units were deployed for 7 days and suppressed cyanobacterial abundance by 85% while at the same time enhancing other water quality parameters; turbidity and transparency improved by 40 and 81% respectively. Genomic analysis of the microbiota in the treated mesocosms revealed that the composition of the cyanobacterial community was affected and the abundance of Bacteroidetes and Proteobacteria increased during cyanobacterial suppression. The effect of the treatment on zooplankton and other eukaryotes was also monitored. The abundance of zooplankton decreased while Chrysophyte and Alveolata loadings increased. The results of this proof-of-concept study demonstrate the potential for full-scale, in-reservoir application of advanced oxidation processes as complementary water treatment processes.
Assuntos
Cianobactérias , Água Potável , Animais , Titânio , Zooplâncton , FitoplânctonRESUMO
Exsolution of excess transition metal cations from a non-stoichiometric perovskite oxide has sparked interest as a facile route for the formation of stable nanoparticles on the oxide surface. However, the atomic-scale mechanism of this nanoparticle formation remains largely unknown. The present in situ scanning transmission electron microscopy combined with density functional theory calculation revealed that the anti-phase boundaries (APBs) characterized by the a/2 < 011> type lattice displacement accommodate the excess B-site cation (Ni) through the edge-sharing of BO6 octahedra in a non-stoichiometric ABO3 perovskite oxide (La0.2Sr0.7Ni0.1Ti0.9O3-δ) and provide the fast diffusion pathways for nanoparticle formation by exsolution. Moreover, the APBs further promote the outward diffusion of the excess Ni toward the surface as the segregation energy of Ni is lower at the APB/surface intersection. The formation of nanoparticles occurs through the two-step crystallization mechanism, i.e., the nucleation of an amorphous phase followed by crystallization, and via reactive wetting on the oxide support, which facilitates the formation of a stable triple junction and coherent interface, leading to the distinct socketing of nanoparticles to the oxide support. The atomic-scale mechanism unveiled in this study can provide insights into the design of highly stable nanostructures.
RESUMO
Plastics are utilised globally but are of environmental concern due to their persistence. The global presence of microplastics (particles <5 mm in all dimensions) in freshwater environments is increasingly reported, as has the presence of cyanobacterial toxins, including the microcystins. We elucidated the potential role of microplastics as a vector for eight microcystin analogues. Two sizes of polypropylene (PP) and polyethylene terephthalate (PET) microparticles were evaluated. The median particle size distribution (D50) was 8-28 µm for small particles, and 81-124 µm for large particles. Additionally, microcystin-LR and -LF were evaluated individually using small PP and PET to elucidate the adsorption behaviour in the absence of competition. Microcystin hydrophobicity, polymer material, and particle size were key factors influencing adsorption to the plastic microparticles. The small size PP microparticles demonstrated a high affinity for the 8 microcystin analogues. The proportion of microcystin adsorbed onto the small particles of PP after 48 h contact was between 83 and 100%, depending on the analogue. Of all analogues investigated, only microcystin-LW and -LF adsorbed onto the larger sized PP and PET microparticles. Individually, greater amounts of MC-LF adsorbed onto the small PET (19%) compared to when it was present in the mixture of microcystins (11%). While MC-LR did not adsorb onto small PET microparticles in the mixture, 5% adsorption was observed when individually in contact with small PET microparticles. The results demonstrated that microplastics can adsorb eight different microcystin analogues and that more hydrophobic analogues are more likely to adsorb than less hydrophobic analogues.
Assuntos
Microcistinas , Poluentes Químicos da Água , Adsorção , Toxinas de Cianobactérias , Microcistinas/análise , Microplásticos , Plásticos , Polietilenotereftalatos , Polipropilenos , Poluentes Químicos da Água/análiseRESUMO
Protonic ceramic fuel cells (PCFCs) have become the most efficient, clean and cost-effective electrochemical energy conversion devices in recent years. While significant progress has been made in developing proton conducting electrolyte materials, mechanical strength and durability still need to be improved for efficient applications. We report that adding 5 mol% Zn to the Y-doped barium cerate-zirconate perovskite electrolyte material can significantly improve the sintering properties, mechanical strength, durability and performance. Using same proton conducting material in anodes, electrolytes and cathodes to make a strong structural backbone shows clear advantages in mechanical strength over other arrangements with different materials. Rietveld analysis of the X-ray and neutron diffraction data of BaCe0.7Zr0.1Y0.15Zn0.05O3-δ (BCZYZn05) revealed a pure orthorhombic structure belonging to the Pbnm space group. Structural and electrochemical analyses indicate highly dense and high proton conductivity at intermediate temperature (400-700 °C). The anode-supported single cell, NiO-BCZYZn05|BCZYZn05|BSCF-BCZYZn05, demonstrates a peak power density of 872 mW cm-2 at 700 °C which is one of the highest power density in an all-protonic solid oxide fuel cell. This observation represents an important step towards commercially viable SOFC technology.
RESUMO
To date, the high cost of supplying UV irradiation has prevented the widespread application of UV photolysis and titanium dioxide based photocatalysis in removing undesirable organics in the water treatment sector. To overcome this problem, the use of UV-LEDs (365 nm) for photolysis and heterogeneous photocatalysis applying TiO2 coated glass beads under UV-LED illumination (365 nm) in a pilot scale reactor for the elimination of Microcystis aeruginosa PCC7813 and four microcystin analogues (MC-LR, -LY, -LW, -LF) with a view to deployment in drinking water reservoirs was investigated. UV-A (365 nm) photolysis was shown to be more effective than the UV/TiO2 photocatalytic system for the removal of Microcystis aeruginosa cells and microcystins. During photolysis, cell density significantly decreased over 5 days from an initial concentration of 5.8 × 106 cells mL-1 until few cells were left. Both intra- and extracellular microcystin concentrations were significantly reduced by 100 and 92 %, respectively, by day 5 of the UV treatment for all microcystin analogues. During UV/TiO2 treatment, there was great variability between replicates, making prediction of the effect on cyanobacterial cell and toxin behavior difficult.
Assuntos
Microcistinas , Microcystis , Toxinas Marinhas , Fotólise , Projetos Piloto , TitânioRESUMO
We observe the extraction of carriers excited between two types of bands in the perovskite oxide, Sr-deficient strontium niobate (Sr0.9NbO3). Sr0.9NbO3 exhibits metallic behaviour and high conductivity, whilst also displaying broad absorption across the ultraviolet, visible, and near-infrared spectral regions, making it an attractive material for solar energy conversion. Furthermore, the optoelectronic properties of strontium niobate can easily be tuned by varying the Sr fraction or through doping. Sr-deficient strontium niobate exhibits a split conduction band, which enables two types of optical transitions: intraband and interband. However, whether such carriers can be extracted from an unusual material as such remains unproven. In this report, we have overcome the immense challenge of photocarrier extraction by fabricating an extremely thin absorber layer of Sr0.9NbO3 nanoparticles. These findings open up great opportunities to harvest a very broad solar spectral absorption range with reduced recombination losses.
RESUMO
Platinum functions exceptionally well as a nanoparticulate catalyst in many important fields, such as in the removal of atmospheric pollutants, but it is scarce, expensive and not always sufficiently durable. Here, we report a perovskite system in which 0.5 wt% Pt is integrated into the support and its subsequent conversion through exsolution to achieve a resilient catalyst. Owing to the instability of most Pt oxides at high temperatures, a thermally stable platinum oxide precursor, barium platinate, was used to preserve the platinum as an oxide during the solid-state synthesis in an approach akin to the Trojan horse legend. By tailoring the procedure, it is possible to produce a uniform equilibrated structure with active emergent Pt nanoparticles strongly embedded in the perovskite surface that display better CO oxidation activity and stability than those of conventionally prepared Pt catalysts. This catalyst was further evaluated for a variety of reactions under realistic test environments-CO and NO oxidation, diesel oxidation catalysis and ammonia slip reactions were investigated.