Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cancer Ther ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710101

RESUMO

PURPOSE: Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSVs) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell mediated immunity may lead to more durable tumor regression. EXPERIMENTAL DESIGN: To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine co-delivering peptide antigens and Toll-like receptor-7 and -8 agonists (TLR-7/8a) (referred to as SNAPvax™), that induces robust tumor specific T cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T cell responses, viral replication, and preclinical efficacy. RESULTS: The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax™ vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumour volume and increases in virus replication and tumor antigen specific CD8+ T cells. CONCLUSIONS: These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.

2.
Nat Commun ; 15(1): 2140, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459027

RESUMO

T cell receptors (TCR) are pivotal in mediating tumour cell cytolysis via recognition of mutation-derived tumour neoantigens (neoAgs) presented by major histocompatibility class-I (MHC-I). Understanding the factors governing the emergence of neoAg from somatic mutations is a major focus of current research. However, the structural and cellular determinants controlling TCR recognition of neoAgs remain poorly understood. This study describes the multi-level analysis of a model neoAg from the B16F10 murine melanoma, H2-Db/Hsf2 p.K72N68-76, as well as its cognate TCR 47BE7. Through cellular, molecular and structural studies we demonstrate that the p.K72N mutation enhances H2-Db binding, thereby improving cell surface presentation and stabilizing the TCR 47BE7 epitope. Furthermore, TCR 47BE7 exhibited high functional avidity and selectivity, attributable to a broad, stringent, binding interface enabling recognition of native B16F10 despite low antigen density. Our findings provide insight into the generation of anchor-residue modified neoAg, and emphasize the value of molecular and structural investigations of neoAg in diverse MHC-I contexts for advancing the understanding of neoAg immunogenicity.


Assuntos
Melanoma , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Melanoma/genética , Mutação , Epitopos de Linfócito T
3.
Cell Rep ; 42(6): 112599, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37279110

RESUMO

Therapeutic neoantigen cancer vaccines have limited clinical efficacy to date. Here, we identify a heterologous prime-boost vaccination strategy using a self-assembling peptide nanoparticle TLR-7/8 agonist (SNP) vaccine prime and a chimp adenovirus (ChAdOx1) vaccine boost that elicits potent CD8 T cells and tumor regression. ChAdOx1 administered intravenously (i.v.) had 4-fold higher antigen-specific CD8 T cell responses than mice boosted by the intramuscular (i.m.) route. In the therapeutic MC38 tumor model, i.v. heterologous prime-boost vaccination enhances regression compared with ChAdOx1 alone. Remarkably, i.v. boosting with a ChAdOx1 vector encoding an irrelevant antigen also mediates tumor regression, which is dependent on type I IFN signaling. Single-cell RNA sequencing of the tumor myeloid compartment shows that i.v. ChAdOx1 reduces the frequency of immunosuppressive Chil3 monocytes and activates cross-presenting type 1 conventional dendritic cells (cDC1s). The dual effect of i.v. ChAdOx1 vaccination enhancing CD8 T cells and modulating the TME represents a translatable paradigm for enhancing anti-tumor immunity in humans.


Assuntos
Linfócitos T CD8-Positivos , Vacinação , Humanos , Camundongos , Animais , Imunidade Adaptativa , Vetores Genéticos , Adjuvantes Imunológicos
4.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778273

RESUMO

Physical interactions between T cell receptors (TCRs) and mutation-derived tumour neoantigens (neoAg) presented by major histocompatibility class-I (MHC-I) enable sensitive and specific cytolysis of tumour cells. Adoptive transfer of neoAg-reactive T cells in patients is correlated with response to immunotherapy; however, the structural and cellular mechanisms of neoAg recognition remain poorly understood. We have identified multiple cognate neoAg:TCRs from B16F10, a common murine implantable tumour model of melanoma. We identified a high affinity TCR targeting H2-Db-restricted Hsf2K72N that conferred specific recognition of B16F10 in vitro and in vivo. Structural characterization of the peptide-MHC (pMHC) binary and pMHC:TCR ternary complexes yielded high-resolution crystal structures, revealing the formation of a solvent-exposed hydrophobic arch in H2-Db that enables multiple intermolecular contacts between pMHC and the TCR. These features of structural stability strikingly mimic that of a previously published influenza peptide-H2-Db complex and its corresponding TCR, suggesting that there are shared structural motifs between neoantigens and viral peptides that explain their shared immunogenicity.

5.
Cell ; 185(23): 4317-4332.e15, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36302380

RESUMO

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells. Using a self-assembling nanoparticle vaccine that links tumor antigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we treated tumor-bearing mice subcutaneously (SNP-SC) or intravenously (SNP-IV). Both routes generated antigen-specific CD8+ T cells that infiltrated tumors. However, only SNP-IV mediated tumor regression, dependent on systemic type I interferon at the time of boost. Single-cell RNA-sequencing revealed that intratumoral monocytes expressing an immunoregulatory gene signature (Chil3, Anxa2, Wfdc17) were reduced after SNP-IV boost. In humans, the Chil3+ monocyte gene signature is enriched in CD16- monocytes and associated with worse outcomes. Our results show that the generation of tumor-specific CD8+ T cells combined with remodeling of the TME is a promising approach for tumor immunotherapy.


Assuntos
Vacinas Anticâncer , Microambiente Tumoral , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunoterapia/métodos , Antígenos de Neoplasias , Vacinação/métodos , Adjuvantes Imunológicos
6.
Neurooncol Adv ; 3(1): vdab027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860227

RESUMO

Though outcomes for pediatric cancer patients have significantly improved over the past several decades, too many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after conventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of immunotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition of tumor antigens, thereby minimizing off-target toxicity. As such, cancer vaccines are orthogonal to conventional cancer treatments and can therefore be used alone or in combination with other therapeutic modalities to maximize efficacy. To date, cancer vaccination has remained largely understudied in the pediatric population. In this review, we discuss the different types of tumor antigens and vaccine technologies (dendritic cells, peptides, nucleic acids, and viral vectors) evaluated in clinical trials, with a focus on those used in children. We conclude with perspectives on how advances in combination therapies, tumor antigen (eg, neoantigen) selection, and vaccine platform optimization can be translated into clinical practice to improve outcomes for children with cancer.

7.
Nat Immunol ; 22(1): 41-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139915

RESUMO

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8+ T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1+PD-1+CD8+ T cells as compared to subcutaneous immunization (SNP-SC). Single-cell RNA sequencing showed that SNP-IV induced stem-like genes (Tcf7, Slamf6, Xcl1) whereas SNP-SC enriched for effector genes (Gzmb, Klrg1, Cx3cr1). Stem-like cells generated by SNP-IV proliferated and differentiated into effector cells upon checkpoint blockade, leading to superior antitumor response as compared to SNP-SC in a therapeutic model. The duration of antigen presentation by dendritic cells controlled the magnitude and quality of CD8+ T cells. These data demonstrate how to optimize antitumor immunity by modulating vaccine parameters for specific generation of effector or stem-like CD8+ T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Fator 1-alfa Nuclear de Hepatócito/análise , Nanopartículas , Animais , Apresentação de Antígeno , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Feminino , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
8.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932728

RESUMO

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Assuntos
Adjuvantes Imunológicos/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Camundongos , Nanopartículas , Medicina de Precisão , Primatas , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Vacinação , Vacinas Conjugadas
9.
Oncogene ; 38(34): 6159-6171, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31289361

RESUMO

Malignant tumors of the central nervous system (CNS) continue to be a leading cause of cancer-related mortality in both children and adults. Traditional therapies for malignant brain tumors consist of surgical resection and adjuvant chemoradiation; such approaches are often associated with extreme morbidity. Accordingly, novel, targeted therapeutics for neoplasms of the CNS, such as immunotherapy with oncolytic engineered herpes simplex virus (HSV) therapy, are urgently warranted. Herein, we discuss treatment challenges related to HSV virotherapy delivery, entry, replication, and spread, and in so doing focus on host anti-viral immune responses and the immune microenvironment. Strategies to overcome such challenges including viral re-engineering, modulation of the immunoregulatory microenvironment and combinatorial therapies with virotherapy, such as checkpoint inhibitors, radiation, and vaccination, are also examined in detail.


Assuntos
Neoplasias Encefálicas/terapia , Resistencia a Medicamentos Antineoplásicos , Herpesvirus Humano 1/fisiologia , Terapia Viral Oncolítica/métodos , Terapias em Estudo , Adulto , Neoplasias Encefálicas/genética , Criança , Resistencia a Medicamentos Antineoplásicos/imunologia , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/fisiologia , Terapias em Estudo/métodos , Terapias em Estudo/tendências , Resultado do Tratamento
10.
J Clin Invest ; 129(9): 3894-3908, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31219804

RESUMO

Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical for vaccine optimization and defining correlates of protection. However, conditions for determining Ag-specific CD8 T-cell responses ex-vivo using ICS may be variable, especially in humans with complex antigens. Here, we used an attenuated whole parasite malaria vaccine model in humans and various experimental infections in mice to show that the duration of antigenic stimulation and timing of brefeldin A (BFA) addition influences the magnitude of Ag-specific and bystander T cell responses. Indeed, following immunization with an attenuated whole sporozoite malaria vaccine in humans, significantly higher numbers of IFN-γ producing memory CD8 T-cells comprised of antigen specific and bystander responses were detected by increasing the duration of Ag-stimulation prior to addition of BFA. Mechanistic analyses of virus-specific CD8 T-cells in mice revealed that the increase in IFNg producing CD8 T-cells was due to bystander activation of Ag-experienced memory CD8 T-cells, and correlated with the proportion of Ag-experienced CD8 T-cells in the stimulated populations. Incubation with anti-cytokine antibodies (ex. IL-12) improved accuracy in detecting bona-fide memory CD8 T-cell responses suggesting this as the mechanism for the bystander activation. These data have important implications for accurate assessment of immune responses generated by vaccines intended to elicit protective memory CD8 T-cells.


Assuntos
Antígenos/imunologia , Efeito Espectador , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Animais , Brefeldina A/farmacologia , Citocinas/metabolismo , Feminino , Humanos , Imunização , Memória Imunológica , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Malária/prevenção & controle , Vacinas Antimaláricas , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Baço/citologia , Vacinas Atenuadas/imunologia
11.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30608149

RESUMO

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Assuntos
Adjuvantes Imunológicos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ativação Linfocitária , Micelas , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Hidrodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
12.
Malar J ; 17(1): 275, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053881

RESUMO

BACKGROUND: Plasmodium 18S rRNA is a biomarker used to monitor blood-stage infections in malaria clinical trials. Plasmodium sporozoites also express this biomarker, and there is conflicting evidence about how long sporozoite-derived 18S rRNA persists in peripheral blood. If present in blood for an extended timeframe, sporozoite-derived 18S rRNA could complicate use as a blood-stage biomarker. METHODS: Blood samples from Plasmodium yoelii infected mice were tested for Plasmodium 18S rRNA and their coding genes (rDNA) using sensitive quantitative reverse transcription PCR and quantitative PCR assays, respectively. Blood and tissues from Plasmodium falciparum sporozoite (PfSPZ)-infected rhesus macaques were similarly tested. RESULTS: In mice, when P. yoelii sporozoite inoculation and blood collection were performed at the same site (tail vein), low level rDNA positivity persisted for 2 days post-infection. Compared to intact parasites with high rRNA-to-rDNA ratios, this low level positivity was accompanied by no increase in rRNA-to-rDNA, indicating detection of residual, non-viable parasite rDNA. When P. yoelii sporozoites were administered via the retro-orbital vein and blood sampled by cardiac puncture, neither P. yoelii 18S rRNA nor rDNA were detected 24 h post-infection. Similarly, there was no P. falciparum 18S rRNA detected in blood of rhesus macaques 3 days after intravenous injection with extremely high doses of PfSPZ. Plasmodium 18S rRNA in the rhesus livers increased by approximately 101-fold from 3 to 6 days post infection, indicating liver-stage proliferation. CONCLUSIONS: Beyond the first few hours after injection, sporozoite-derived Plasmodium 18S rRNA was not detected in peripheral blood. Diagnostics based on 18S rRNA are unlikely to be confounded by sporozoite inocula in human clinical trials.


Assuntos
Plasmodium yoelii/fisiologia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Administração Intravenosa , Animais , Feminino , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Esporozoítos/química
13.
Am J Trop Med Hyg ; 99(2): 338-349, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29943719

RESUMO

We are using controlled human malaria infection (CHMI) by direct venous inoculation (DVI) of cryopreserved, infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) to try to reduce time and costs of developing PfSPZ Vaccine to prevent malaria in Africa. Immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 × 105 PfSPZ of PfSPZ Vaccine gave 65% vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time to event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian adults. We assessed the identical regimen in Tanzanians for VE against PfSPZ Challenge. Twenty- to thirty-year-old men were randomized to receive five doses normal saline or PfSPZ Vaccine in a double-blind trial. Vaccine efficacy was assessed 3 and 24 weeks later. Adverse events were similar in vaccinees and controls. Antibody responses to Pf circumsporozoite protein were significantly lower than in malaria-naïve Americans, but significantly higher than in Malians. All 18 controls developed Pf parasitemia after CHMI. Four of 20 (20%) vaccinees remained uninfected after 3 week CHMI (P = 0.015 by time to event, P = 0.543 by proportional analysis) and all four (100%) were uninfected after repeat 24 week CHMI (P = 0.005 by proportional, P = 0.004 by time to event analysis). Plasmodium falciparum SPZ Vaccine was safe, well tolerated, and induced durable VE in four subjects. Controlled human malaria infection by DVI of PfSPZ Challenge appeared more stringent over 24 weeks than mosquito bite CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test of VE in Africa.


Assuntos
Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Administração Intravenosa , Adulto , Método Duplo-Cego , Experimentação Humana , Humanos , Imunização/efeitos adversos , Vacinas Antimaláricas/efeitos adversos , Masculino , Tanzânia , Adulto Jovem
14.
NPJ Vaccines ; 2: 27, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263882

RESUMO

A malaria vaccine that prevents infection will be an important new tool in continued efforts of malaria elimination, and such vaccines are under intense development for the major human malaria parasite Plasmodium falciparum (Pf). Antibodies elicited by vaccines can block the initial phases of parasite infection when sporozoites are deposited into the skin by mosquito bite and then target the liver for further development. However, there are currently no standardized in vivo preclinical models that can measure the inhibitory activity of antibody specificities against Pf sporozoite infection via mosquito bite. Here, we use human liver-chimeric mice as a challenge model to assess prevention of natural Pf sporozoite infection by antibodies. We demonstrate that these mice are consistently infected with Pf by mosquito bite and that this challenge can be combined with passive transfer of either monoclonal antibodies or polyclonal human IgG from immune serum to measure antibody-mediated blocking of parasite infection using bioluminescent imaging. This methodology is useful to down-select functional antibodies and to investigate mechanisms or immune correlates of protection in clinical trials, thereby informing rational vaccine optimization.

15.
JCI Insight ; 2(21)2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093263

RESUMO

The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.


Assuntos
Anticorpos Neutralizantes , Proteínas de Transporte/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinação , Imunidade Adaptativa , Adulto , Anticorpos Antiprotozoários/sangue , Proteínas de Transporte/genética , Epitopos/imunologia , Feminino , Vetores Genéticos , Humanos , Imunização , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Vaccinia virus , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 114(10): 2711-2716, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223498

RESUMO

A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Vacinas Atenuadas/administração & dosagem , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/patogenicidade , Esporozoítos/imunologia , Esporozoítos/patogenicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/parasitologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia
17.
Nature ; 542(7642): 445-449, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28199305

RESUMO

A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinas Atenuadas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Cloroquina/uso terapêutico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Memória Imunológica/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Plasmodium falciparum/classificação , Esporozoítos/imunologia , Linfócitos T/imunologia , Fatores de Tempo , Vacinas Atenuadas/administração & dosagem , Adulto Jovem
18.
PLoS One ; 11(7): e0159449, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27434123

RESUMO

Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/tratamento farmacológico , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/uso terapêutico , Antígenos de Protozoários/imunologia , Feminino , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Plasmodium yoelii/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico
20.
Nat Med ; 22(6): 614-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27158907

RESUMO

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina/imunologia , Fígado/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Parasitemia/prevenção & controle , Plasmodium falciparum/imunologia , Administração Intravenosa , Adolescente , Adulto , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Fígado/citologia , Macaca mulatta , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Esporozoítos/imunologia , Linfócitos T/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA