Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 5(5): 5804-5810, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647495

RESUMO

The optical performance of a multilayer antireflective coating incorporating lithography-free nanostructured alumina is assessed. To this end, the performance of single-junction GaInP solar cells and four-junction GaInP/GaAs/GaInNAsSb/GaInNAsSb multijunction solar cells incorporating the nanostructured alumina is compared against the performance of similar solar cells using conventional double-layer antireflective coating. External quantum efficiency measurements for GaInP solar cells with the nanostructured coating demonstrate angle-independent operation, showing only a marginal difference at 60° incident angle. The average reflectance of the nanostructured antireflective coating is ∼3 percentage points smaller than the reflectance of the double-layer antireflective coating within the operation bandwidth of the GaInP solar cell (280-710 nm), which is equivalent of ∼0.2 mA/cm2 higher current density at AM1.5D (1000 W/m2). When used in conjunction with the four-junction solar cell, the nanostructured coating provides ∼0.8 percentage points lower average reflectance over the operation bandwidth from 280 to 1380 nm. However, it is noted that only the reflectance of the bottom GaInNAsSb junction is improved in comparison to the planar coating. In this respect, since in such solar cells the bottom junction typically is limiting the operation, the nanostructured coating would enable increasing the current density ∼0.6 mA/cm2 in comparison to the standard two-layer coating. The light-biased current-voltage measurements show that the fabrication process for the nanostructured coating does not induce notable recombination or loss mechanisms compared to the established deposition methods. Angle-dependent external quantum efficiency measurements incline that the nanostructured coating excels in oblique angles, and due to low reflectance at a 1000-1800 nm wavelength range, it is very promising for next-generation broadband multijunction solar cells with four or more junctions.

2.
Nanotechnology ; 32(21)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33596557

RESUMO

A new method for modification of planar multilayer structures to create nanostructured aluminum oxide anti-reflection coatings is reported. The method is non-toxic and low-cost, being based on treatment of the coating with heated de-ionized water after the deposition of aluminum oxide. The results show that the method provides a viable alternative for attaining a low reflectance ARC. In particular, a low average reflectivity of ∼3.3% is demonstrated in a broadband spectrum extending from 400 nm to 2000 nm for ARCs deposited on GaInP solar-cells, the typical material used as top-junction in solar cell tandem architectures. Moreover, the process is compatible with volume manufacturing technologies used in photovoltaics, such as ion beam sputtering and electron beam evaporation.

3.
Appl Opt ; 59(21): 6304-6308, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32749293

RESUMO

Quantum dot solar cells are promising for next-generation photovoltaics owing to their potential for improved device efficiency related to bandgap tailoring and quantum confinement of charge carriers. Yet implementing effective photon management to increase the absorptivity of the quantum dots is instrumental. To this end, the performance of thin-film InAs/GaAs quantum dot solar cells with planar and structured back reflectors is reported. The experimental thin-film solar cells with planar reflectors exhibited a bandgap-voltage offset of 0.3 V with an open circuit voltage of 0.884 V, which is one of the highest values reported for quantum dot solar cells grown by molecular beam epitaxy to our knowledge. Using measured external quantum efficiency and current-voltage characteristics, we parametrize a simulation model that was used to design an advanced reflector with diffractive pyramidal gratings revealing a 12-fold increase of the photocurrent generation in the quantum dot layers.

4.
Opt Lett ; 45(4): 943-946, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058512

RESUMO

The length variation associated with standard cleaving of III-V optoelectronic chips is a major source of loss in the integration with the micron-scale silicon-on-insulator waveguides. To this end, a new, to the best of our knowledge, approach for precise definition of the III-V chip length is reported. The method employs lithography and wet etching of cleave marks outside the active III-V waveguides. The marks follow a specific crystallographic orientation and are used to initiate and guide the cleaving process. Besides minimizing the air gap between the butt-coupled III-V and Si waveguides and hence minimizing the coupling losses, the use of precisely defined length significantly improves the integration yield owing to the increased length uniformity. We apply this technique to defining the lengths of GaAs-based semiconductor optical amplifiers and demonstrate length control with an accuracy better than 250 nm per facet. This variation is more than 1 order of magnitude smaller than with the traditional cleaving methods, resulting in improvement of coupling by several dBs.

5.
Opt Express ; 26(26): 34336-34345, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650857

RESUMO

High speed back-to-back transmission of NRZ data at 12.5 Gbit/s was achieved over a repeaterless optical network without the use of forward error correction or optical clock recovery using a hybrid integrated silicon photonics optical interconnect. The interconnect comprises an electroabsorption modulator based on dilute nitride multiple quantum well material on GaAs substrate optically coupled to large core silicon waveguide using passive alignment and flip-chip bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA