Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19380, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371536

RESUMO

Amorphous oxide semiconductor (AOS) field-effect transistors (FETs) have been integrated with complementary metal-oxide-semiconductor (CMOS) circuitry in the back end of line (BEOL) CMOS process; they are promising devices creating new and various functionalities. Therefore, it is urgent to understand the physics determining their scalability and establish a physics-based model for a robust device design of AOS BEOL FETs. However, the advantage emphasized to date has been mainly an ultralow leakage current of these devices. A device modeling that comprehensively optimizes the threshold voltage (VT), the short-channel effect (SCE), the subthreshold swing (SS), and the field-effect mobility (µFE) of short-channel AOS FETs has been rarely reported. In this study, the device modeling of two-steps oxygen anneal-based submicron indium-gallium-zinc-oxide (IGZO) BEOL FET enabling short-channel effects suppression is proposed and experimentally demonstrated. Both the process parameters determining the SCE and the device physics related to the SCE are elucidated through our modeling and a technology computer-aided design (TCAD) simulation. In addition, the procedure of extracting the model parameters is concretely supplied. Noticeably, the proposed device model and simulation framework reproduce all of the measured current-voltage (I-V), VT roll-off, and drain-induced barrier lowering (DIBL) characteristics according to the changes in the oxygen (O) partial pressure during the deposition of IGZO film, device structure, and channel length. Moreover, the results of an analysis based on the proposed model and the extracted parameters indicate that the SCE of submicron AOS FETs is effectively suppressed when the locally high oxygen-concentration region is used. Applying the two-step oxygen annealing to the double-gate (DG) FET can form this region, the beneficial effect of which is also proven through experimental results; the immunity to SCE is improved as the O-content controlled according to the partial O pressure during oxygen annealing increases. Furthermore, it is found that the essential factors in the device optimization are the subgap density of states (DOS), the oxygen content-dependent diffusion length of either the oxygen vacancy (VO) or O, and the separation between the top-gate edge and the source-drain contact hole. Our modeling and simulation results make it feasible to comprehensively optimize the device characteristic parameters, such as VT, SCE, SS, and µFE, of the submicron AOS BEOL FETs by independently controlling the lateral profile of the concentrations of VO and O in two-step oxygen anneal process.

2.
ACS Appl Mater Interfaces ; 14(1): 1389-1396, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978416

RESUMO

Amorphous oxide semiconductor transistors control the illuminance of pixels in an ecosystem of displays from large-screen TVs to wearable devices. To satisfy application-specific requirements, oxide semiconductor transistors of various cation compositions have been explored. However, a comprehensive study has not been carried out where the influence of cation composition, oxygen, and hydrogen on device characteristics and stability is systematically quantified, using commercial-grade process technology. In this study, we fabricate self-aligned top-gate structure thin-film transistors with three oxide semiconductor materials, InGaZnO (In/Ga/Zn = 1:1:1), In-rich InGaZnO, and InZnO, having mobility values of 10, 27, and 40 cm2/V·s, respectively. Combinations of varied amounts of oxygen and hydrogen are incorporated into each transistor by controlling the fabrication process to study the effect of these gaseous elements on the physical nature of the channel material. Electrons can be captured by peroxy linkage (O22-) or undercoordinated In (In* to become In+), which are manifested in the extracted subgap density-of-states profile and first-principles calculations. Energy difference between electron-trapped In+ and O22- σ* is the smallest for IGZO, and In+-O22- annihilation occurs by electron excitation from the subgap In+ state to the O22- σ*. Furthermore, characteristic time constants during positive bias stress and recovery reveal the various microscopic physical phenomena within the transistor structure between different cation compositions.

3.
Micromachines (Basel) ; 12(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808738

RESUMO

In this study, we analyzed the threshold voltage shift characteristics of bottom-gate amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) under a wide range of positive stress voltages. We investigated four mechanisms: electron trapping at the gate insulator layer by a vertical electric field, electron trapping at the drain-side GI layer by hot-carrier injection, hole trapping at the source-side etch-stop layer by impact ionization, and donor-like state creation in the drain-side IGZO layer by a lateral electric field. To accurately analyze each mechanism, the local threshold voltages of the source and drain sides were measured by forward and reverse read-out. By using contour maps of the threshold voltage shift, we investigated which mechanism was dominant in various gate and drain stress voltage pairs. In addition, we investigated the effect of the oxygen content of the IGZO layer on the positive stress-induced threshold voltage shift. For oxygen-rich devices and oxygen-poor devices, the threshold voltage shift as well as the change in the density of states were analyzed.

4.
Materials (Basel) ; 12(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590279

RESUMO

We investigated the effect of simultaneous mechanical and electrical stress on the electrical characteristics of flexible indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs). The IGZO TFTs exhibited a threshold voltage shift (∆VTH) under an application of positive-bias-stress (PBS), with a turnaround behavior from the positive ∆VTH to the negative ∆VTH with an increase in the PBS application time, whether a mechanical stress is applied or not. However, the magnitudes of PBS-induced ∆VTH in both the positive and negative directions exhibited significantly larger values when a flexible IGZO TFT was under mechanical-bending stress than when it was at the flat state. The observed phenomena were possibly attributed to the mechanical stress-induced interface trap generation and the enhanced hydrogen diffusion from atomic layer deposition-grown Al2O3 to IGZO under mechanical-bending stress during PBS. The subgap density of states was extracted before and after an application of PBS under both mechanical stress conditions. The obtained results in this study provided potent evidence supporting the mechanism suggested to explain the PBS-induced larger ∆VTHs in both directions under mechanical-bending stress.

5.
Nano Lett ; 17(3): 1949-1955, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28231005

RESUMO

Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing ( Li et al. Sci. Rep. 2014 , 4 , 4096 ). Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr0.52Ti0.48O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT (thickness of ∼4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (107) and low energy consumption (potentiation energy consumption = ∼22 aJ and depression energy consumption = ∼2.5 pJ). In addition, the simple alignment of the downward polarization in PZT selectively activates the synaptic plasticity of the FTJ and the transition from short-term plasticity to long-term potentiation.

6.
ACS Appl Mater Interfaces ; 7(28): 15570-7, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26094854

RESUMO

Persistent photoconduction (PPC) is a phenomenon that limits the application of oxide semiconductor thin-film transistors (TFTs) in optical sensor-embedded displays. In the present work, a study on zinc oxynitride (ZnON) semiconductor TFTs based on the combination of experimental results and device simulation is presented. Devices incorporating ZnON semiconductors exhibit negligible PPC effects compared with amorphous In-Ga-Zn-O (a-IGZO) TFTs, and the difference between the two types of materials are examined by monochromatic photonic C-V spectroscopy (MPCVS). The latter method allows the estimation of the density of subgap states in the semiconductor, which may account for the different behavior of ZnON and IGZO materials with respect to illumination and the associated PPC. In the case of a-IGZO TFTs, the oxygen flow rate during the sputter deposition of a-IGZO is found to influence the amount of PPC. Small oxygen flow rates result in pronounced PPC, and large densities of valence band tail (VBT) states are observed in the corresponding devices. This implies a dependence of PPC on the amount of oxygen vacancies (VO). On the other hand, ZnON has a smaller bandgap than a-IGZO and contains a smaller density of VBT states over the entire range of its bandgap energy. Here, the concept of activation energy window (AEW) is introduced to explain the occurrence of PPC effects by photoinduced electron doping, which is likely to be associated with the formation of peroxides in the semiconductor. The analytical methodology presented in this report accounts well for the reduction of PPC in ZnON TFTs, and provides a quantitative tool for the systematic development of phototransistors for optical sensor-embedded interactive displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA