RESUMO
Biallelic pathogenic variants in UQCRFS1 underlie a rare form of isolated mitochondrial complex III deficiency associated with lactic acidosis and a distinctive scalp alopecia previously described in two unrelated probands. Here, we describe a participant in the Undiagnosed Diseases Network (UDN) with a dual diagnosis of two autosomal recessive disorders revealed by genome sequencing: UQCRFS1-related mitochondrial complex III deficiency and GJA8-related cataracts. Both pathogenic variants have been reported before: UQCRFS1 (NM_006003.3:c.215-1 G>C, p.Val72_Thr81del10) in a case with mitochondrial complex III deficiency and GJA8 (NM 005267.5:c.736 G>T, p.Glu246*) as a somatic change in aged cornea leading to decreased junctional coupling. A multi-modal approach combining enzyme assays and cellular proteomics analysis provided clear evidence of complex III respiratory chain dysfunction and low abundance of the Rieske iron-sulfur protein, validating the pathogenic effect of the UQCRFS1 variant. This report extends the genotypic and phenotypic spectrum for these two rare disorders and highlights the utility of deep phenotyping and genomics data to achieve diagnosis and insights into rare disease.
RESUMO
INTRODUCTION: Genomic screening to identify individuals with Lynch Syndrome (LS) and those with a high polygenic risk score (PRS) promises to personalize Colorectal Cancer (CRC) screening. Understanding its clinical and economic impact is needed to inform screening guidelines and reimbursement policies. METHODS: We developed a Markov model to simulate individuals over a lifetime. We compared LS+PRS genomic screening to standard of care (SOC) for a cohort of US adults at age 30. The Markov model included health states of "no CRC", CRC stages (A-D) and death. We estimated incidence, mortality, and discounted economic outcomes of the population under different interventions. RESULTS: Screening 1000 individuals for LS+PRS resulted in 1.36 fewer CRC cases and 0.65 fewer deaths compared to SOC. The incremental cost-effectiveness ratio (ICER) was $124,415 per quality-adjusted life-year (QALY); screening had a 69% probability of being cost-effective using a willingness to pay threshold of $150,000/QALY. Setting the PRS threshold at the 90th percentile of the LS+PRS screening program to define individuals at high risk was most likely to be cost-effective compared to 95th, 85th, and 80th percentiles. CONCLUSION: Population-level LS+PRS screening is marginally cost-effective and a threshold of 90th percentile is more likely to be cost-effective than other thresholds.
RESUMO
Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental risk factors. Polygenic risk scores (PRSs) aim to identify high polygenic risk individuals. Due to differences in genetic background, PRS distributions vary by ancestry, necessitating standardization. We compared four post-hoc methods using the All of Us Research Program Whole Genome Sequence data for a transancestry CRC PRS. We contrasted results from linear models trained on A. the entire data or an ancestrally diverse subset AND B. covariates including principal components of ancestry or admixture. Standardization with the training subset also adjusted the variance. All methods performed similarly within ancestry, OR (95% C.I.) per s.d. change in PRS: African 1.5 (1.02, 2.08), Admixed American 2.2 (1.27, 3.85), European 1.6 (1.43, 1.89), and Middle Eastern 1.1 (0.71, 1.63). Using admixture and an ancestrally diverse training set provided distributions closest to standard Normal. Training a model on ancestrally diverse participants, adjusting both the mean and variance using admixture as covariates, created standard Normal z-scores, which can be used to identify patients at high polygenic risk. These scores can be incorporated into comprehensive risk calculation including other known risk factors, allowing for more precise risk estimates.
RESUMO
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
Assuntos
Proteína de Replicação C , Humanos , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Masculino , Células HeLa , Feminino , Fenótipo , Replicação do DNA/genética , Adulto , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , AlelosRESUMO
Pharmacogenomics promises improved outcomes through individualized prescribing. However, the lack of diversity in studies impedes clinical translation and equitable application of precision medicine. We evaluated the frequencies of PGx variants, predicted phenotypes, and medication exposures using whole genome sequencing and EHR data from nearly 100k diverse All of Us Research Program participants. We report 100% of participants carried at least one pharmacogenomics variant and nearly all (99.13%) had a predicted phenotype with prescribing recommendations. Clinical impact was high with over 20% having both an actionable phenotype and a prior exposure to an impacted medication with pharmacogenomic prescribing guidance. Importantly, we also report hundreds of alleles and predicted phenotypes that deviate from known frequencies and/or were previously unreported, including within admixed American and African ancestry groups.
RESUMO
Preeclampsia, a pregnancy complication characterized by hypertension after 20 gestational weeks, is a major cause of maternal and neonatal morbidity and mortality. Mechanisms leading to preeclampsia are unclear; however, there is evidence of high heritability. We evaluated the association of polygenic scores (PGS) for blood pressure traits and preeclampsia to assess whether there is shared genetic architecture. Non-Hispanic Black and White reproductive age females with pregnancy indications and genotypes were obtained from Vanderbilt University's BioVU, Electronic Medical Records and Genomics network, and Penn Medicine Biobank. Preeclampsia was defined by ICD codes. Summary statistics for diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) PGS were acquired from Giri et al. Associations between preeclampsia and each PGS were evaluated separately by race and data source before subsequent meta-analysis. Ten-fold cross validation was used for prediction modeling. In 3504 Black and 5009 White included individuals, the rate of preeclampsia was 15.49%. In cross-ancestry meta-analysis, all PGSs were associated with preeclampsia (ORDBP = 1.10, 95% CI 1.02-1.17, p = 7.68 × 10-3; ORSBP = 1.16, 95% CI 1.09-1.23, p = 2.23 × 10-6; ORPP = 1.14, 95% CI 1.07-1.27, p = 9.86 × 10-5). Addition of PGSs to clinical prediction models did not improve predictive performance. Genetic factors contributing to blood pressure regulation in the general population also predispose to preeclampsia.
Assuntos
Pressão Sanguínea , Pré-Eclâmpsia , Humanos , Pré-Eclâmpsia/genética , Feminino , Gravidez , Pressão Sanguínea/genética , Adulto , Predisposição Genética para Doença , Herança Multifatorial , População Branca/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
PURPOSE: Research that includes diverse patient populations is necessary to optimize implementation of telehealth. METHODS: As part of a Clinical Sequencing Evidence-Generating Research Consortium cross-site study, we assessed satisfaction with mode of return of results (RoR) delivery across a diverse sample of participants receiving genetic testing results in person vs telemedicine (TM). RESULTS: Ninety-eight percent of participants were satisfied with their mode of results delivery. Participants receiving results by TM were more likely to report a preference for receiving results in a different way and challenges with providers noticing difficulties with understanding. More than 90% reported satisfaction across all items measuring support and interaction during sessions. Participants self-reporting Hispanic/Latino or Black/African American race and ethnicity compared with White/European American, fewer years of education, and having lower health literacy were more likely to report challenges with understanding the information or asking questions. Participants who were White/European American, had more years of education, and higher health literacy reported higher communication scores, reflecting more positive evaluations of the communication experience. CONCLUSION: TM is an acceptable mode of return of results delivery across diverse settings and populations. Research optimizing approaches for underrepresented populations, populations with lower levels of education and health literacy, and multilingual populations is necessary.
Assuntos
Testes Genéticos , Humanos , Feminino , Masculino , Adulto , Testes Genéticos/métodos , Pessoa de Meia-Idade , Telemedicina , Genômica/métodos , Satisfação do Paciente , Letramento em Saúde , IdosoRESUMO
Type 2 diabetes (T2D) is caused by both genetic and environmental factors and is associated with an increased risk of cardiorenal complications and mortality. Though disproportionately affected by the condition, African Americans (AA) are largely underrepresented in genetic studies of T2D, and few estimates of heritability have been calculated in this race group. Using genome-wide association study (GWAS) data paired with phenotypic data from ~ 19,300 AA participants of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, Genetics of Hypertension Associated Treatments (GenHAT) study, and the Electronic Medical Records and Genomics (eMERGE) network, we estimated narrow-sense heritability using two methods: Linkage-Disequilibrium Adjusted Kinships (LDAK) and Genome-Wide Complex Trait Analysis (GCTA). Study-level heritability estimates adjusting for age, sex, and genetic ancestry ranged from 18% to 34% across both methods. Overall, the current study narrows the expected range for T2D heritability in this race group compared to prior estimates, while providing new insight into the genetic basis of T2D in AAs for ongoing genetic discovery efforts.
Assuntos
Negro ou Afro-Americano , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Diabetes Mellitus Tipo 2/genética , Negro ou Afro-Americano/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Polimorfismo de Nucleotídeo Único , Desequilíbrio de Ligação , Fenótipo , Herança Multifatorial/genéticaRESUMO
Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.
Assuntos
Predisposição Genética para Doença , Leucopenia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Contagem de Leucócitos , Masculino , Feminino , Leucopenia/genética , Leucopenia/sangue , Pessoa de Meia-Idade , Idoso , Adulto , Imunossupressores/uso terapêuticoRESUMO
The differential performance of polygenic risk scores (PRSs) by group is one of the major ethical barriers to their clinical use. It is also one of the main practical challenges for any implementation effort. The social repercussions of how people are grouped in PRS research must be considered in communications with research participants, including return of results. Here, we outline the decisions faced and choices made by a large multi-site clinical implementation study returning PRSs to diverse participants in handling this issue of differential performance. Our approach to managing the complexities associated with the differential performance of PRSs serves as a case study that can help future implementers of PRSs to plot an anticipatory course in response to this issue.
Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Fatores de Risco , Estudo de Associação Genômica Ampla , Medição de Risco , Testes Genéticos/métodos , Estratificação de Risco GenéticoRESUMO
Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best and worst performing quintiles for certain covariates. 28 covariates had significant PGSBMI-covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects - across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account non-linear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge GWAS effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.
RESUMO
OBJECTIVE: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. RESULTS: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors (49.09%), samples from transgender participants (3.64%) and stem cell or bone marrow transplant patients (7.27%) along with undetermined sample mix-ups (40%) for which sample swaps occurred prior to arrival at genome centers, however the exact cause of the events at the sampling sites resulting in the mix-ups were not able to be determined.
Assuntos
Serviços de Laboratório Clínico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transplante de Medula Óssea , Genótipo , LaboratóriosRESUMO
Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.
Assuntos
Doença Crônica , Estratificação de Risco Genético , Saúde da População , Adulto , Criança , Humanos , Comunicação , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco , Estados UnidosRESUMO
Background: Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental risk factors. Polygenic risk scores (PRS) are being developed to identify high polygenic risk individuals. Due to differences in genetic background, PRS distributions vary by ancestry, necessitating calibration. Methods: We compared four calibration methods using the All of Us Research Program Whole Genome Sequence data for a CRC PRS previously developed in participants of European and East Asian ancestry. The methods contrasted results from linear models with A) the entire data set or an ancestrally diverse training set AND B) covariates including principal components of ancestry or admixture. Calibration with the training set adjusted the variance in addition to the mean. Results: All methods performed similarly within ancestry with OR (95% C.I.) per s.d. change in PRS: African 1.5 (1.02, 2.08), Admixed American 2.2 (1.27, 3.85), European 1.6 (1.43, 1.89), and Middle Eastern 1.1 (0.71, 1.63). Using admixture and an ancestrally diverse training set provided distributions closest to standard Normal with accurate upper tail frequencies. Conclusion: Although the PRS is predictive of CRC risk for most ancestries, its performance varies by ancestry. Post-hoc calibration preserves the risk prediction within ancestries. Training a calibration model on ancestrally diverse participants to adjust both the mean and variance of the PRS, using admixture as covariates, created standard Normal z-scores. These z-scores can be used to identify patients at high polygenic risk, and can be incorporated into comprehensive risk scores including other known risk factors, allowing for more precise risk estimates.
RESUMO
Resolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploid de novo genome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1, and RB1) previously associated with single-gene MCs. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four 'omes' to resolve. These included nonsense-mediated decay, fusion transcript formation, enhancer adoption, transcriptional readthrough silencing, and inappropriate X chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.
RESUMO
Objective: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. Results: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors, samples from transgender participants and stem cell or bone marrow transplant patients along with undetermined sample mix-ups.
RESUMO
Clostridioides difficile (C. diff.) infection (CDI) is a leading cause of hospital acquired diarrhea in North America and Europe and a major cause of morbidity and mortality. Known risk factors do not fully explain CDI susceptibility, and genetic susceptibility is suggested by the fact that some patients with colons that are colonized with C. diff. do not develop any infection while others develop severe or recurrent infections. To identify common genetic variants associated with CDI, we performed a genome-wide association analysis in 19,861 participants (1349 cases; 18,512 controls) from the Electronic Medical Records and Genomics (eMERGE) Network. Using logistic regression, we found strong evidence for genetic variation in the DRB locus of the MHC (HLA) II region that predisposes individuals to CDI (P > 1.0 × 10-14; OR 1.56). Altered transcriptional regulation in the HLA region may play a role in conferring susceptibility to this opportunistic enteric pathogen.
Assuntos
Infecções por Clostridium , Estudo de Associação Genômica Ampla , Humanos , Infecções por Clostridium/genética , Diarreia , Antígenos de Histocompatibilidade , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Variação GenéticaRESUMO
As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.