Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 15: 896314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620447

RESUMO

Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme ß-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.

2.
Dis Model Mech ; 12(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31036560

RESUMO

Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingolipidoses/genética , Animais , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lisossomos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Psicosina/farmacologia , Receptor IGF Tipo 1/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingolipidoses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA