Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Rep ; 43(7): 114413, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38943640

RESUMO

Basal dendrites of layer 5 cortical pyramidal neurons exhibit Na+ and N-methyl-D-aspartate receptor (NMDAR) regenerative spikes and are uniquely poised to influence somatic output. Nevertheless, due to technical limitations, how multibranch basal dendritic integration shapes and enables multiplexed barcoding of synaptic streams remains poorly mapped. Here, we combine 3D two-photon holographic transmitter uncaging, whole-cell dynamic clamp, and biophysical modeling to reveal how synchronously activated synapses (distributed and clustered) across multiple basal dendritic branches are multiplexed under quiescent and in vivo-like conditions. While dendritic regenerative Na+ spikes promote millisecond somatic spike precision, distributed synaptic inputs and NMDAR spikes regulate gain. These concomitantly occurring dendritic nonlinearities enable multiplexed information transfer amid an ongoing noisy background, including under back-propagating voltage resets, by barcoding the axo-somatic spike structure. Our results unveil a multibranch dendritic integration framework in which dendritic nonlinearities are critical for multiplexing different spatial-temporal synaptic input patterns, enabling optimal feature binding.

2.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766232

RESUMO

Linking sensory-evoked traveling waves to underlying circuit patterns is critical to understanding the neural basis of sensory perception. To form this link, we performed simultaneous electrophysiology and two-photon calcium imaging through transparent NeuroGrids and mapped touch-evoked cortical traveling waves and their underlying microcircuit dynamics. In awake mice, both passive and active whisker touch elicited traveling waves within and across barrels, with a fast early component followed by a variable late wave that lasted hundreds of milliseconds post-stimulus. Strikingly, late-wave dynamics were modulated by stimulus value and correlated with task performance. Mechanistically, the late wave component was i) modulated by motor feedback, ii) complemented by a sparse ensemble pattern across layer 2/3, which a balanced-state network model reconciled via inhibitory stabilization, and iii) aligned to regenerative Layer-5 apical dendritic Ca 2+ events. Our results reveal a translaminar spacetime pattern organized by cortical feedback in the sensory cortex that supports touch-evoked traveling waves. GRAPHICAL ABSTRACT AND HIGHLIGHTS: Whisker touch evokes both early- and late-traveling waves in the barrel cortex over 100's of millisecondsReward reinforcement modulates wave dynamics Late wave emergence coincides with network sparsity in L23 and time-locked L5 dendritic Ca 2+ spikes Experimental and computational results link motor feedback to distinct translaminar spacetime patterns.

3.
Cell Rep ; 36(5): 109495, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348148

RESUMO

Scn2a encodes the voltage-gated sodium channel NaV1.2, a main mediator of neuronal action potential firing. The current paradigm suggests that NaV1.2 gain-of-function variants enhance neuronal excitability, resulting in epilepsy, whereas NaV1.2 deficiency impairs neuronal excitability, contributing to autism. However, this paradigm does not explain why ∼20%-30% of individuals with NaV1.2 deficiency still develop seizures. Here, we report the counterintuitive finding that severe NaV1.2 deficiency results in increased neuronal excitability. Using a NaV1.2-deficient mouse model, we show enhanced intrinsic excitability of principal neurons in the prefrontal cortex and striatum, brain regions known to be involved in Scn2a-related seizures. This increased excitability is autonomous and reversible by genetic restoration of Scn2a expression in adult mice. RNA sequencing reveals downregulation of multiple potassium channels, including KV1.1. Correspondingly, KV channel openers alleviate the hyperexcitability of NaV1.2-deficient neurons. This unexpected neuronal hyperexcitability may serve as a cellular basis underlying NaV1.2 deficiency-related seizures.


Assuntos
Envelhecimento/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2/deficiência , Neurônios/fisiologia , Potenciais de Ação , Animais , Regulação para Baixo , Ativação do Canal Iônico , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canais de Potássio/metabolismo
4.
Sci Adv ; 6(46)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33188030

RESUMO

Nanofluidic platforms offering tunable material transport are applicable in biosensing, chemical detection, and filtration. Prior studies have achieved selective and controllable ion transport through electrical, optical, or chemical gating of complex nanostructures. Here, we mechanically control nanofluidic transport using nanobubbles. When plugging nanochannels, nanobubbles rectify and occasionally enhance ionic currents in a geometry-dependent manner. These conductance effects arise from nanobubbles inducing surface-governed ion transport through interfacial electrolyte films residing between nanobubble surfaces and nanopipette walls. The nanobubbles investigated here are mechanically generated, made metastable by surface pinning, and verified with cryogenic transmission electron microscopy. Our findings are relevant to nanofluidic device engineering, three-phase interface properties, and nanopipette-based applications.

5.
Nat Electron ; 2(8): 343-350, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31850397

RESUMO

Intracellular electrophysiology is a foundational method in neuroscience and uses electrolyte-filled glass electrodes and benchtop amplifiers to measure and control transmembrane voltages and currents. Commercial amplifiers perform such recordings with high signal-to-noise ratios (SNRs) but are often expensive, bulky, and not easily scalable to many channels due to reliance on board-level integration of discrete components. Here, we present a monolithic complementary-metal-oxide-semiconductor (CMOS) multi-clamp amplifier integrated circuit capable of recording both voltages and currents with performance exceeding that of commercial benchtop instrumentation. Miniaturization enables high-bandwidth current mirroring, facilitating the synthesis of large-valued active resistors with lower noise than their passive equivalents. This enables the realization of compensation modules that can account for a wide range of electrode impedances. We validate the amplifier's operation electrically, in primary neuronal cultures, and in acute slices, using both high-impedance sharp and patch electrodes. This work provides a solution for low-cost, high-performance and scalable multi-clamp amplifiers.

6.
J Comput Neurosci ; 47(1): 77-89, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31410632

RESUMO

The biophysical properties of dendritic spines play a critical role in neuronal integration but are still poorly understood, due to experimental difficulties in accessing them. Spine biophysics has been traditionally explored using theoretical models based on cable theory. However, cable theory generally assumes that concentration changes associated with ionic currents are negligible and, therefore, ignores electrodiffusion, i.e. the interaction between electric fields and ionic diffusion. This assumption, while true for large neuronal compartments, could be incorrect when applied to femto-liter size structures such as dendritic spines. To extend cable theory and explore electrodiffusion effects, we use here the Poisson (P) and Nernst-Planck (NP) equations, which relate electric field to charge and Fick's law of diffusion, to model ion concentration dynamics in spines receiving excitatory synaptic potentials (EPSPs). We use experimentally measured voltage transients from spines with nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive diffusion and electrodiffusion jointly affect the dynamics of spine EPSPs; (ii) spine geometry plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases during EPSPs, leading to short-term synaptic facilitation. Our formulation, which complements and extends cable theory, can be easily adapted to model ionic biophysics in other nanoscale bio-compartments.


Assuntos
Espinhas Dendríticas/fisiologia , Modelos Neurológicos , Potenciais Sinápticos/fisiologia , Animais , Ânions , Cátions , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ativação do Canal Iônico/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Eletricidade Estática
7.
J Phys Chem A ; 123(38): 8285-8293, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31264868

RESUMO

Ion current rectification (ICR) is a transport phenomenon in which an electrolyte conducts unequal currents at equal and opposite voltages. Here, we show that nanoscale fluid vortices and nonlinear electroosmotic flow (EOF) drive ICR in the presence of concentration gradients. The same EOF can yield negative differential resistance (NDR), in which current decreases with increasing voltage. A finite element model quantitatively reproduces experimental ICR and NDR recorded across glass nanopipettes under concentration gradients. The model demonstrates that spatial variations of electrical double layer properties induce the nanoscale vortices and nonlinear EOF. Experiments are performed in conditions directly related to scanning probe imaging and show that quantitative understanding of nanoscale transport under concentration gradients requires accounting for EOF. This characterization of nanopipette transport physics will benefit diverse experimentation, pushing the resolution limits of chemical and biophysical recordings.

8.
Cell Rep ; 26(1): 266-278.e5, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605681

RESUMO

Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10-25 nm and spring constant of ∼0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ∼800 MΩ, 5 to ∼10 cells/nanopipette, and duration of ∼1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.


Assuntos
Fenômenos Eletrofisiológicos/genética , Eletrofisiologia/métodos , Animais , Camundongos
9.
Nat Nanotechnol ; 12(4): 335-342, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27941898

RESUMO

Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.


Assuntos
Materiais Revestidos Biocompatíveis , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Somação de Potenciais Pós-Sinápticos , Pontos Quânticos/química , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Eletrodos , Camundongos
10.
Sci Rep ; 5: 18477, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686301

RESUMO

We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry.


Assuntos
Técnicas Biossensoriais/métodos , Células Cromafins/química , Exocitose , Mastócitos/química , Animais , Dinitrofenóis/química , Técnicas Eletroquímicas , Imunoglobulina E/química , Ratos , Soroalbumina Bovina/química , Transistores Eletrônicos
11.
Artigo em Inglês | MEDLINE | ID: mdl-25353854

RESUMO

We report on factors that affect DNA hybridization detection using ion-sensitive field-effect transistors (ISFETs). Signal generation at the interface between the transistor and immobilized biomolecules is widely ascribed to unscreened molecular charges causing a shift in surface potential and hence the transistor output current. Traditionally, the interaction between DNA and the dielectric or metal sensing interface is modeled by treating the molecular layer as a sheet charge and the ionic profile with a Poisson-Boltzmann distribution. The surface potential under this scenario is described by the Graham equation. This approximation, however, often fails to explain large hybridization signals on the order of tens of mV. More realistic descriptions of the DNA-transistor interface which include factors such as ion permeation, exclusion, and packing constraints have been proposed with little or no corroboration against experimental findings. In this study, we examine such physical models by their assumptions, range of validity, and limitations. We compare simulations against experiments performed on electrolyte-oxide-semiconductor capacitors and foundry-ready floating-gate ISFETs. We find that with weakly charged interfaces (i.e., low intrinsic interface charge), pertinent to the surfaces used in this study, the best agreement between theory and experiment exists when ions are completely excluded from the DNA layer. The influence of various factors such as bulk pH, background salinity, chemical reactivity of surface groups, target molecule concentration, and surface coatings on signal generation is studied. Furthermore, in order to overcome Debye screening limited detection, we suggest two signal enhancement strategies. We first describe frequency domain biosensing, highlighting the ability to sort short DNA strands based on molecular length, and then describe DNA biosensing in multielectrolytes comprising trace amounts of higher-valency salt in a background of monovalent saline. Our study provides guidelines for optimized interface design, signal enhancement, and the interpretation of FET-based biosensor signals.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , DNA/química , DNA/genética , Modelos Químicos , Transistores Eletrônicos , Simulação por Computador , Desenho Assistido por Computador , DNA/análise , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Eletricidade Estática
12.
Artigo em Inglês | MEDLINE | ID: mdl-23944512

RESUMO

Electrochemical gating is the process by which an electric field normal to the insulator electrolyte interface shifts the surface chemical equilibrium and further affects the charge in solution [Jiang and Stein, Langmuir 26, 8161 (2010)]. The surface chemical reactivity and double-layer charging at the interface of electrolyte-oxide-semiconductor (EOS) capacitors is investigated. We find a strong pH-dependent hysteresis upon dc potential cycling. Varying salinity at a constant pH does not change the hysteretic window, implying that field-induced surface pH regulation is the dominant cause of hysteresis. We propose and investigate this mechanism in foundry-made floating-gate ion-sensitive field-effect transistors, which can serve as both an ionic sensor and an actuator. Termed the chemoreceptive neuron metal-oxide-semiconductor (CνMOS) transistor, it features independently driven control gates (CGs) and sensing gates (SGs) that are capacitively coupled to an extended floating gate (FG). The SG is exposed to fluid, the CG is independently driven, and the FG is capable of storing charge Q(FG) of either polarity. Asymmetric capacitive coupling between the CG and SG to FG results in intrinsic amplification of the measured surface potential shifts and influences the FG charge injection mechanism. This modified SG surface condition was monitored through transient recordings of the output current, performed under alternate positive and negative CG pulses. Transient recordings revealed a hysteresis where the current was enhanced under negative pulsing and reduced after positive pulsing. This hysteresis effect is similar to that observed with EOS capacitors, suggesting a field-dependent surface charge regulation mechanism at play. At high CG biases, nonvolatile charge Q(FG) tunneling into the FG occurs, which creates a larger field and tunes the pH response and the point of zero charge. This mechanism gives rise to surface programmability. In this paper we describe the operational principles, tunneling mechanism, and role of electrolyte composition under field modulation. The experimental findings are then modeled by a Poisson-Boltzmann formulation with surface pH regulation. We find that surface ionization constants play a dominant role in determining the pH tuning effect. In the following paper [K. Jayant et al., Phys. Rev. E 88, 012802 (2013)] we extend the dual-gate operation to molecular sensing and demonstrate the use of Q(FG) to achieve manipulation of surface-adsorbed DNA.

13.
Artigo em Inglês | MEDLINE | ID: mdl-23944513

RESUMO

The chemoreceptive neuron metal-oxide-semiconductor transistor described in the preceding paper is further used to monitor the adsorption and interaction of DNA molecules and subsequently manipulate the adsorbed biomolecules with injected static charge. Adsorption of DNA molecules onto poly-L-lysine-coated sensing gates (SGs) modulates the floating gate (FG) potential ψ(O), which is reflected as a threshold voltage shift measured from the control gate (CG) V(th_CG). The asymmetric capacitive coupling between the CG and SG to the FG results in V(th_CG) amplification. The electric field in the SG oxide E(SG_ox) is fundamentally different when we drive the current readout with V(CG) and V(ref) (i.e., the potential applied to the CG and reference electrode, respectively). The V(CG)-driven readout induces a larger E(SG_ox), leading to a larger V(th_CG) shift when DNA is present. Simulation studies indicate that the counterion screening within the DNA membrane is responsible for this effect. The DNA manipulation mechanism is enabled by tunneling electrons (program) or holes (erase) onto FGs to produce repulsive or attractive forces. Programming leads to repulsion and eventual desorption of DNA, while erasing reestablishes adsorption. We further show that injected holes or electrons prior to DNA addition either aids or disrupts the immobilization process, which can be used for addressable sensor interfaces. To further substantiate DNA manipulation, we used impedance spectroscopy with a split ac-dc technique to reveal the net interface impedance before and after charge injection.


Assuntos
DNA/análise , Transistores Eletrônicos , Adsorção , DNA/química , Espectroscopia Dielétrica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA