Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 146(15): 10716-10722, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579164

RESUMO

Chiral alkyl amines are common structural motifs in pharmaceuticals, natural products, synthetic intermediates, and bioactive molecules. An attractive method to prepare these molecules is the asymmetric radical hydroamination; however, this approach has not been explored with dialkyl amine-derived nitrogen-centered radicals since designing a catalytic system to generate the aminium radical cation, to suppress deleterious side reactions such as α-deprotonation and H atom abstraction, and to facilitate enantioselective hydrogen atom transfer is a formidable task. Herein, we describe the application of photoenzymatic catalysis to generate and harness the aminium radical cation for asymmetric intermolecular hydroamination. In this reaction, the flavin-dependent ene-reductase photocatalytically generates the aminium radical cation from the corresponding hydroxylamine and catalyzes the asymmetric intermolecular hydroamination to furnish the enantioenriched tertiary amine, whereby enantioinduction occurs through enzyme-mediated hydrogen atom transfer. This work highlights the use of photoenzymatic catalysis to generate and control highly reactive radical intermediates for asymmetric synthesis, addressing a long-standing challenge in chemical synthesis.

2.
Angew Chem Int Ed Engl ; 62(22): e202302125, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37002909

RESUMO

Herein we report that ene reductases (EREDs) can facilitate an unprecedented intramolecular ß-C-H functionalization reaction for the synthesis of bridged bicyclic nitrogen heterocycles containing the 6-azabicyclo[3.2.1]octane scaffold. To streamline the synthesis of these privileged motifs, we developed a gram-scale one-pot chemoenzymatic cascade by combining iridium photocatalysis with EREDs, using readily available N-phenylglycines and cyclohexenones that can be obtained from biomass. Further derivatization using enzymatic or chemical methods can convert 6-azabicyclo[3.2.1]octan-3-one into 6-azabicyclo[3.2.1]octan-3α-ols, which can be potentially utilized for the synthesis of azaprophen and its analogues for drug discovery. Mechanistic studies revealed the reaction requires oxygen, presumably to produce oxidized flavin, which can selectively dehydrogenate the 3-substituted cyclohexanone derivatives to form the α,ß-unsaturated ketone, which subsequently undergoes spontaneous intramolecular aza-Michael addition under basic conditions.


Assuntos
Cicloexanonas , Oxirredutases , Nitrogênio/química , Catálise
3.
Science ; 379(6639): 1358-1363, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996195

RESUMO

Enzyme function annotation is a fundamental challenge, and numerous computational tools have been developed. However, most of these tools cannot accurately predict functional annotations, such as enzyme commission (EC) number, for less-studied proteins or those with previously uncharacterized functions or multiple activities. We present a machine learning algorithm named CLEAN (contrastive learning-enabled enzyme annotation) to assign EC numbers to enzymes with better accuracy, reliability, and sensitivity compared with the state-of-the-art tool BLASTp. The contrastive learning framework empowers CLEAN to confidently (i) annotate understudied enzymes, (ii) correct mislabeled enzymes, and (iii) identify promiscuous enzymes with two or more EC numbers-functions that we demonstrate by systematic in silico and in vitro experiments. We anticipate that this tool will be widely used for predicting the functions of uncharacterized enzymes, thereby advancing many fields, such as genomics, synthetic biology, and biocatalysis.


Assuntos
Enzimas , Aprendizado de Máquina , Anotação de Sequência Molecular , Proteínas , Análise de Sequência de Proteína , Algoritmos , Biologia Computacional , Enzimas/química , Genômica , Proteínas/química , Reprodutibilidade dos Testes , Anotação de Sequência Molecular/métodos , Análise de Sequência de Proteína/métodos , Biocatálise
4.
RSC Chem Biol ; 3(4): 436-446, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35441146

RESUMO

Nitroheterocycle antibiotics, particularly 5-nitroimidazoles, are frequently used for treating anaerobic infections. The antimicrobial activities of these drugs heavily rely on the in vivo bioactivation, mainly mediated by widely distributed bacterial nitroreductases (NTRs). However, the bioactivation can also lead to severe toxicities and drug resistance. Mechanistic understanding of NTR-mediated 5-nitroimidazole metabolism can potentially aid addressing these issues. Here, we report the metabolism of structurally diverse nitroimidazole drug molecules by a NTR from a human pathogen Haemophilus influenzae (HiNfsB). Our detailed bioinformatic analysis uncovered that HiNfsB represents a group of unexplored oxygen-insensitive NTRs. Biochemical characterization of the recombinant enzyme revealed that HiNfsB effectively metabolizes ten clinically used nitroimidazoles. Furthermore, HiNfsB generated not only canonical nitroreduction metabolites but also stable, novel dimeric products from three nitroimidazoles, whose structures were proposed based on the results of high resolution MS and tandem MS analysis. X-ray structural analysis of the enzyme coupled with site-directed mutagenesis identified four active site residues important to its catalysis and broad substrate scope. Finally, transient expression of HiNfsB sensitized an E. coli mutant strain to 5-nitroimidazoles under anaerobic conditions. Together, these results advance our understanding of the metabolism of nitroimidazole antibiotics mediated by a new NTR group and reinforce the research on the natural antibiotic resistome for addressing the antibiotic resistance crisis.

5.
Nat Commun ; 12(1): 5743, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593817

RESUMO

Machine learning has been increasingly used for protein engineering. However, because the general sequence contexts they capture are not specific to the protein being engineered, the accuracy of existing machine learning algorithms is rather limited. Here, we report ECNet (evolutionary context-integrated neural network), a deep-learning algorithm that exploits evolutionary contexts to predict functional fitness for protein engineering. This algorithm integrates local evolutionary context from homologous sequences that explicitly model residue-residue epistasis for the protein of interest with the global evolutionary context that encodes rich semantic and structural features from the enormous protein sequence universe. As such, it enables accurate mapping from sequence to function and provides generalization from low-order mutants to higher-order mutants. We show that ECNet predicts the sequence-function relationship more accurately as compared to existing machine learning algorithms by using ~50 deep mutational scanning and random mutagenesis datasets. Moreover, we used ECNet to guide the engineering of TEM-1 ß-lactamase and identified variants with improved ampicillin resistance with high success rates.


Assuntos
Aprendizado Profundo , Evolução Molecular , Engenharia de Proteínas/métodos , Sequência de Aminoácidos/genética , Conjuntos de Dados como Assunto , Aptidão Genética , Ensaios de Triagem em Larga Escala , Mutação , Homologia de Sequência de Aminoácidos , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
6.
J Org Chem ; 86(16): 11160-11168, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34006097

RESUMO

Mycosporine-like amino acids (MAAs) are a family of natural products that are produced by a variety of organisms for protection from ultraviolet damage. In this work, we combined different bioinformatic approaches to assess the distribution of the MAA biosynthesis and identified a putative gene cluster from Nostoc linckia NIES-25 that encodes a short-chain dehydrogenase/reductase and a nonheme iron(II)- and 2-oxoglutarate-dependent oxygenase (MysH) as potential new biosynthetic enzymes. Heterologous expression of refactored gene clusters in E. coli produced two known biosynthetic intermediates, 4-deoxygadusol and mycosporine-glycine, and three disubstituted MAA analogues, porphyra-334, shinorine, and mycosporine-glycine-alanine. Importantly, the disubstituted MAAs were converted into palythines by MysH. Furthermore, biochemical characterization revealed the substrate preference of recombinant MysD, a d-Ala-d-Ala ligase-like enzyme for the formation of disubstituted MAAs. Our study advances the biosynthetic understanding of an important family of natural UV photoprotectants and opens new opportunities to the development of next-generation sunscreens.


Assuntos
Aminoácidos , Nostoc , Aminoácidos/genética , Cicloexanóis , Escherichia coli/genética , Glicina/análogos & derivados , Nostoc/genética , Raios Ultravioleta
7.
Nat Commun ; 12(1): 1171, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608525

RESUMO

Direct cloning represents the most efficient strategy to access the vast number of uncharacterized natural product biosynthetic gene clusters (BGCs) for the discovery of novel bioactive compounds. However, due to their large size, repetitive nature, or high GC-content, large-scale cloning of these BGCs remains an overwhelming challenge. Here, we report a scalable direct cloning method named Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination (CAPTURE) which consists of Cas12a digestion, a DNA assembly approach termed T4 polymerase exo + fill-in DNA assembly, and Cre-lox in vivo DNA circularization. We apply this method to clone 47 BGCs ranging from 10 to 113 kb from both Actinomycetes and Bacilli with ~100% efficiency. Heterologous expression of cloned BGCs leads to the discovery of 15 previously uncharacterized natural products including six cyclic head-to-tail heterodimers with a unique 5/6/6/6/5 pentacyclic carbon skeleton, designated as bipentaromycins A-F. Four of the bipentaromycins show strong antimicrobial activity to both Gram-positive and Gram-negative bacteria such as methicillin-resistant Staphylococcus aureus, vancomycinresistant Enterococcus faecium, and bioweapon Bacillus anthracis. Due to its robustness and efficiency, our direct cloning method coupled with heterologous expression provides an effective strategy for large-scale discovery of novel natural products.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Clonagem Molecular/métodos , Endodesoxirribonucleases/genética , Integrases/genética , Recombinação Genética , Actinobacteria/genética , Actinobacteria/metabolismo , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , DNA Bacteriano , Enterococcus faecium/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Família Multigênica , Streptomyces/genética
8.
Chembiochem ; 22(2): 416-422, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816319

RESUMO

Some fungal epithiodiketopiperazine alkaloids display α,ß-polysulfide bridges alongside diverse structural variations. However, the logic of their chemical diversity has rarely been explored. Here, we report the identification of three new (2, 3, 8) and five known (1, 4-7) epithiodiketopiperazines of this subtype from a marine-derived Penicillium sp. The structure elucidation was supported by multiple spectroscopic analyses. Importantly, we observed multiple nonenzymatic interconversions of these analogues in aqueous solutions and organic solvents. Furthermore, the same biosynthetic origin of these compounds was supported by one mined gene cluster. The dominant analogue (1) demonstrated selective cytotoxicity to androgen-sensitive prostate cancer cells and HIF-depleted colorectal cells and mild antiaging activities, linking the bioactivity to oxidative stress. These results provide crucial insight into the formation of fungal epithiodiketopiperazines through chemical interconversions.


Assuntos
Dicetopiperazinas/química , Penicillium/química , Sulfetos/química , Estrutura Molecular
9.
Nature ; 584(7819): 69-74, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512577

RESUMO

Enzymes are increasingly explored for use in asymmetric synthesis1-3, but their applications are generally limited by the reactions available to naturally occurring enzymes. Recently, interest in photocatalysis4 has spurred the discovery of novel reactivity from known enzymes5. However, so far photoinduced enzymatic catalysis6 has not been used for the cross-coupling of two molecules. For example, the intermolecular coupling of alkenes with α-halo carbonyl compounds through a visible-light-induced radical hydroalkylation, which could provide access to important γ-chiral carbonyl compounds, has not yet been achieved by enzymes. The major challenges are the inherent poor photoreactivity of enzymes and the difficulty in achieving stereochemical control of the remote prochiral radical intermediate7. Here we report a visible-light-induced intermolecular radical hydroalkylation of terminal alkenes that does not occur naturally, catalysed by an 'ene' reductase using readily available α-halo carbonyl compounds as reactants. This method provides an efficient approach to the synthesis of various carbonyl compounds bearing a γ-stereocentre with excellent yields and enantioselectivities (up to 99 per cent yield with 99 per cent enantiomeric excess), which otherwise are difficult to access using chemocatalysis. Mechanistic studies suggest that the formation of the complex of the substrates (α-halo carbonyl compounds) and the 'ene' reductase triggers the enantioselective photoinduced radical reaction. Our work further expands the reactivity repertoire of biocatalytic, synthetically useful asymmetric transformations by the merger of photocatalysis and enzyme catalysis.


Assuntos
Alcenos/química , Alcenos/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Luz , Oxirredutases/metabolismo , Processos Fotoquímicos/efeitos da radiação , Álcoois/química , Álcoois/metabolismo , Alquilação/efeitos da radiação , Biocatálise/efeitos da radiação , Biomassa , Carboxiliases/metabolismo , Flavinas/metabolismo , Modelos Químicos , Modelos Moleculares , Estereoisomerismo
10.
Org Lett ; 22(11): 4408-4412, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433885

RESUMO

Waikikiamides A-C (1-3), structurally complex diketopiperazine derivatives, and putative biogenic precursors, (+)-semivioxanthin (4), notoamide F (5), and (-)-notoamide A (6), were isolated from Aspergillus sp. FM242. 1 and 2, bearing a hendecacyclic ring system, represent a novel skeleton. 3 features the first unique heterodimer of two notoamide analogs with an N-O-C bridge. Compounds 1 and 3 exhibit antiproliferative activity with IC50 values in the range of 0.56 to 1.86 µM. The gene clusters mined from the sequenced genome support their putative biosynthetic pathways.


Assuntos
Antineoplásicos/farmacologia , Aspergillus/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dicetopiperazinas/química , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/farmacologia , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares , Conformação Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Estereoisomerismo
11.
Chembiochem ; 20(8): 1068-1077, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30604585

RESUMO

Cytochrome P450 enzymes generally functionalize inert C-H bonds, and thus, they are important biocatalysts for chemical synthesis. However, enzymes that catalyze both aliphatic and aromatic hydroxylation in the same biotransformation process have rarely been reported. A recent biochemical study demonstrated the P450 TxtC for the biosynthesis of herbicidal thaxtomins as the first example of this unique type of enzyme. Herein, the detailed characterization of substrate requirements and biocatalytic applications of TxtC are reported. The results reveal the importance of N-methylation of the thaxtomin diketopiperazine (DKP) core on enzyme reactions and demonstrate the tolerance of the enzyme to modifications on the indole and phenyl moieties of its substrates. Furthermore, hydroxylated, methylated, aromatic DKPs are synthesized through a biocatalytic route comprising TxtC and the promiscuous N-methyltransferase Amir_4628; thus providing a basis for the broad application of this unique P450.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dicetopiperazinas/metabolismo , Biocatálise , Dicetopiperazinas/química , Hidroxilação , Metilação , Especificidade por Substrato
12.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602787

RESUMO

Thaxtomins are virulence factors of most plant-pathogenic Streptomyces strains. Due to their potent herbicidal activity, attractive environmental compatibility, and inherent biodegradability, thaxtomins are key active ingredients of bioherbicides approved by the U.S. Environmental Protection Agency. However, the low yield of thaxtomins in native Streptomyces producers limits their wide agricultural applications. Here, we describe the high-yield production of thaxtomins in a heterologous host. The thaxtomin gene cluster from S. scabiei 87.22 was cloned and expressed in S. albus J1074 after chromosomal integration. The production of thaxtomins and nitrotryptophan analogs was observed using liquid chromatography-mass spectrometry (LC-MS) analysis. When the engineered S. albus J1074 was cultured in the minimal medium Thx defined medium supplemented with 1% cellobiose (TDMc), the yield of the most abundant and herbicidal analog, thaxtomin A, was 10 times higher than that in S. scabiei 87.22, and optimization of the medium resulted in the highest yield of thaxtomin analogs at about 222 mg/liter. Further engineering of the thaxtomin biosynthetic gene cluster through gene deletion led to the production of multiple biosynthetic intermediates important to the chemical synthesis of new analogs. Additionally, the versatility of the thaxtomin biosynthetic system in S. albus J1074 was capitalized on to produce one unnatural fluorinated analog, 5-fluoro-thaxtomin A (5-F-thaxtomin A), whose structure was elucidated by a combination of MS and one-dimensional (1D) and 2D nuclear magnetic resonance (NMR) analyses. Natural and unnatural thaxtomins demonstrated potent herbicidal activity in radish seedling assays. These results indicated that S. albus J1074 has the potential to produce thaxtomins and analogs thereof with high yield, fostering their agricultural applications.IMPORTANCE Thaxtomins are agriculturally valuable herbicidal natural products, but the productivity of native producers is limiting. Heterologous expression of the thaxtomin gene cluster in S. albus J1074 resulted in the highest yield of thaxtomins ever reported, representing a significant leap forward in its wide agricultural use. Furthermore, current synthetic routes to thaxtomins and analogs are lengthy, and two thaxtomin biosynthetic intermediates produced at high yields in this work can provide precursors and building blocks to advanced synthetic routes. Importantly, the production of 5-F-thaxtomin A in engineered S. albus J1074 demonstrated a viable alternative to chemical methods in the synthesis of new thaxtomin analogs. Moreover, our work presents an attractive synthetic biology strategy to improve the supply of herbicidal thaxtomins, likely finding general applications in the discovery and production of many other bioactive natural products.


Assuntos
Herbicidas/metabolismo , Indóis/metabolismo , Família Multigênica , Piperazinas/metabolismo , Streptomyces/metabolismo , Biologia Sintética/métodos , Regulação Bacteriana da Expressão Gênica , Streptomyces/genética , Fatores de Virulência/metabolismo
13.
Microb Cell Fact ; 17(1): 25, 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454348

RESUMO

BACKGROUND: Genome sequencing revealed that Streptomyces sp. can dedicate up to ~ 10% of their genomes for the biosynthesis of bioactive secondary metabolites. However, the majority of these biosynthetic gene clusters are only weakly expressed or not at all. Indeed, the biosynthesis of natural products is highly regulated through integrating multiple nutritional and environmental signals perceived by pleiotropic and pathway-specific transcriptional regulators. Although pathway-specific refactoring has been a proved, productive approach for the activation of individual gene clusters, the construction of a global super host strain by targeting pleiotropic-specific genes for the expression of multiple diverse gene clusters is an attractive approach. RESULTS: Streptomyces albus J1074 is a gifted heterologous host. To further improve its secondary metabolite expression capability, we rationally engineered the host by targeting genes affecting NADPH availability, precursor flux, cell growth and biosynthetic gene transcriptional activation. These studies led to the activation of the native paulomycin pathway in engineered S. albus strains and importantly the upregulated expression of the heterologous actinorhodin gene cluster. CONCLUSIONS: Rational engineering of Streptomyces albus J1074 yielded a series of mutants with improved capabilities for native and heterologous expression of secondary metabolite gene clusters.


Assuntos
Família Multigênica/genética , Streptomyces/genética , Sequenciamento Completo do Genoma/métodos
14.
Mol Plant Pathol ; 19(7): 1733-1741, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316196

RESUMO

With few exceptions, thaxtomin A (ThxA), a nitrated diketopiperazine, is the pathogenicity determinant for plant-pathogenic Streptomyces species. In Streptomyces scabiei (syn. S. scabies), the ThxA biosynthetic cluster is located within a 177-kb mobile pathogenicity island (PAI), called the toxicogenic region (TR). In S. turgidiscabies, the ThxA biosynthetic cluster is located within a 674-kb pathogenicity island (PAIst). The emergence of new plant pathogens occurs in this genus, but not frequently. This raises the question of whether the mobilization of these pathogenicity regions, through mating, is widespread and whether TR and PAIst can confer plant pathogenicity. We showed that ThxA biosynthetic clusters on TR and PAIst were transferred into strains from five non-pathogenic Streptomyces species through mating with S. scabiei and S. turgidiscabies. However, not all of the transconjugants produced ThxA and exhibited the virulence phenotype, indicating that the genetic background of the recipient strains affects the functionality of the ThxA biosynthetic cluster and therefore would be expected to affect the emergence of novel pathogenic Streptomyces species. Thxs have been patented as natural herbicides, but have yet to be commercialized. Our results also demonstrated the potential of the heterologous production of ThxA as a natural and biodegradable herbicide in non-pathogenic Streptomyces species.


Assuntos
Ilhas Genômicas/genética , Streptomyces/genética , Streptomyces/patogenicidade , Indóis/metabolismo , Piperazinas/metabolismo , Doenças das Plantas/microbiologia , Streptomyces/metabolismo , Virulência
15.
J Mol Graph Model ; 68: 128-139, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27434826

RESUMO

Dot1-like protein (DOT1L) is a histone methyltransferase that has become a novel and promising target for acute leukemias bearing mixed lineage leukemia (MLL) gene rearrangements. In this study, a hierarchical docking-based virtual screening combined with molecular dynamic (MD) simulation was performed to identify DOT1L inhibitors with novel scaffolds. Consequently, 8 top-ranked hits were eventually identified and were further subjected to MD simulation. It was indicated that all hits could reach equilibrium with DOT1L in the MD simulation and further binding free energy calculations suggested that phenoxyacetamide-derived hits such as L01, L03, L04 and L05 exhibited remarkably higher binding affinity compared to other hits. Among them, L03 showed both the lowest glide score (-12.281) and the most favorable binding free energy (-303.9+/-16.5kJ/mol), thereby making it a promising lead for further optimization.


Assuntos
Acetamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Metiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Acetamidas/química , Avaliação Pré-Clínica de Medicamentos , Metiltransferases/química , Proteínas Mutantes/química , Curva ROC , Termodinâmica , Interface Usuário-Computador
16.
Org Lett ; 17(18): 4428-31, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26315849

RESUMO

The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.


Assuntos
Alcaloides Indólicos/síntese química , Alcenos/síntese química , Alcenos/química , Catálise , Ciclização , Hidrocarbonetos Bromados/química , Alcaloides Indólicos/química , Malásia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo , Triptaminas
17.
Org Lett ; 16(7): 1908-11, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24666363

RESUMO

Highly asymmetric bromocyclization of tryptophol by using chiral anionic phase-transfer catalyst and DABCO-derived brominating reagent is described. Optimization of the reaction conditions revealed that the reaction rate was accelerated together with improvement of enantioselectivity by addition of catalytic DABCO-derived brominating reagent. From tryptophol, 3-bromofuroindoline could be directly obtained in excellent enantioselectivities by employing this novel methodology.


Assuntos
Hidrocarbonetos Bromados/síntese química , Indóis/química , Piperazinas/química , Catálise , Química Orgânica/métodos , Ciclização , Hidrocarbonetos Bromados/química , Hidrocarbonetos Iodados , Estrutura Molecular , Estereoisomerismo
18.
Angew Chem Int Ed Engl ; 52(49): 12924-7, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24123660

RESUMO

A shorter path: A highly enantioselective bromocyclization of tryptamine has been developed using an anionic chiral phase-transfer catalyst. This method provides a direct approach for preparing chiral 3-bromopyrroloindoline from tryptamine, which enables a four-step enantioselective synthesis of (-)-chimonanthine. PG=protecting group.


Assuntos
Indóis/síntese química , Pirróis/síntese química , Triptaminas/química , Triptaminas/síntese química , Catálise , Ciclização , Hidrocarbonetos Bromados/síntese química , Hidrocarbonetos Bromados/química , Indóis/química , Pirróis/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA