RESUMO
The phase transitions in IrTe2 have been extensively studied but the symmetry at each phase is yet to be settled. Employing second harmonic generation (SHG) measurements over a temperature range of 4 -300 K, we probe the evolution of the symmetry of IrTe2. Our results indicate shifts in two distinct transition temperatures (Ts1 and Ts2 with Ts1 > Ts2) through thermal cycling, providing an explanation for the variations of reported values in literature. The SHG polarimetry measurements identify symmetries in different temperature ranges, confirming the trigonal symmetry above Ts1, the triclinic symmetry between Ts1 and Ts2, and the coexistence of multiple stripe phases below Ts2. The most striking feature is the reemergence of a trigonal phase as reflected by six-fold symmetry below ~ 10 K which is likely responsible for phenomena observed at low temperatures.
RESUMO
Upon cooling, condensed-matter systems typically transition into states of lower symmetry. The converse-i.e., the emergence of higher symmetry at lower temperatures-is extremely rare. In this work, we show how an unusually isotropic magnetoresistance in the highly anisotropic, one-dimensional conductor Li0.9Mo6O17 and its temperature dependence can be interpreted as a renormalization group (RG) flow toward a so-called separatrix. This approach is equivalent to an emergent symmetry in the system. The existence of two distinct ground states, Mott insulator and superconductor, can then be traced back to two opposing RG trajectories. By establishing a direct link between quantum field theory and an experimentally measurable quantity, we uncover a path through which emergent symmetry might be identified in other candidate materials.
RESUMO
PdTe is a superconductor with Tc ~ 4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. Below Tc, the electronic specific heat initially decreases in T3 behavior (1.5 K < T < Tc) then exponentially decays. Using the two-band model, the superconducting specific heat can be well described with two energy gaps: one is 0.372 meV and another 1.93 meV. The calculated bulk band structure consists of two electron bands (α and ß) and two hole bands (γ and η) at the Fermi level. Experimental detection of the de Haas-van Alphen (dHvA) oscillations allows us to identify four frequencies (Fα = 65 T, Fß = 658 T, Fγ = 1154 T, and Fη = 1867 T for H // a), consistent with theoretical predictions. Nontrivial α and ß bands are further identified via both calculations and the angle dependence of the dHvA oscillations. Our results suggest that PdTe is a candidate for unconventional superconductivity.
RESUMO
The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoemission spectroscopy, we establish it as a spin-orbit coupled Dirac semimetal with the topological Fermi arc crossing the Fermi level on the (010) surface. This spin-textured surface state exhibits a fully gapped superconducting Cooper pairing structure below T_{c}â¼4.5 K. Moreover, we find a node in the bulk near the Brillouin zone boundary, away from the topological Fermi arc. These observations not only demonstrate the band resolved electronic correlation between topological Fermi arc states and the way it induces Cooper pairing in PdTe, but also provide a rare case where surface and bulk states host a coexistence of nodeless and nodal gap structures enforced by spin-orbit coupling.
RESUMO
Spinel compounds AB2X4 consist of both tetrahedral (AX4) and octahedral (BX6) environments with the former forming a diamond lattice and the latter a geometrically frustrated pyrochlore lattice. Exploring the fascinating physical properties and their correlations with structural features is critical in understanding these materials. FeMn2O4 has been reported to exhibit one structural transition and two successive magnetic transitions. Here, we report the polyhedral distortions and their correlations to the structural and two magnetic transitions in FeMn2O4 by employing the high-resolution neutron powder diffraction. The cation distribution is found to be (Mn0.92+Fe0.13+)A(Mn3+Fe0.93+Mn0.12+)BO4. While large trigonal distortion is found even in the high-temperature cubic phase, the first-order cubic-tetragonal structural transition associated with the elongation of both tetrahedra and octahedra with shared oxygen atoms along the c axis occurs at TS ≈ 750 K, driven by the Jahn-Teller effect of the orbital active B-site Mn3+ cation. Strong magnetoelastic coupling is unveiled at TN1 ≈ 400 K as manifested by the appearance of Néel-type collinear ferrimagnetic order, an anomaly in both tetrahedral and octahedral distortions, as well as an anomalous decrease of the lattice constants c and a weak anomaly of a. Upon cooling to TN2 ≈ 65 K, it evolves to a noncollinear ferrimagnetic order accompanied by the different moments at the split magnetic sites B1 and B2. Only one-half of the B-site Mn3+/Fe3+ spins, i.e., the B2-site spins in the pyrochlore lattice, are canted, which is a unique magnetic order among spinels. The canting angle between A-site and B2-site moments is â¼25°, but the B1-site moment stays antiparallel to the A-site moment even at 10 K. This noncollinear order is accompanied by a modification of the O-B-O bond angles in the octahedra without significant change in lattice constants or tetrahedral/octahedral distortion parameters, indicating a distinct magnetoelastic coupling. We demonstrate distinct roles of the A-site and B-site magnetic cations in the structural and magnetic properties of FeMn2O4. Our study indicates that FeMn2O4 is a wonderful platform to unveil interesting magnetic order and to investigate their correlations with polyhedral distortions and lattice.
RESUMO
The presence of surface/deep defects in 4d- and 5d-perovskite oxide (ABO3, B = Nb, Ta, Mo, etc.) nanoparticles (NPs), originating from multivalent B-site cations, contributes to suppressing their metallic properties. These defect states can be removed using a H2/Ar thermal treatment, enabling the recovery of their electronic properties (i.e., low electrical resistivity, high carrier concentration, etc.) as expected from their electronic structure. Therefore, to engineer the electronic properties of these metastable perovskites, an oxygen-controlled crystallization approach coupled with a subsequent H2/Ar treatment was utilized. A comprehensive study of the effect of the post-treatment time on the electronic properties of these perovskite NPs was performed using a combination of scattering, spectroscopic, and computational techniques. These measurements revealed that a metallic-like state is stabilized in these oxygen-reduced NPs due to the suppression of deep rather than surface defects. Ultimately, this synthetic approach can be employed to synthesize ABO3 perovskite NPs with tunable electronic properties for application into electrochemical devices.
RESUMO
Magnetic insulators are important materials for a range of next-generation memory and spintronic applications. Structural constraints in this class of devices generally require a clean heterointerface that allows effective magnetic coupling between the insulating layer and the conducting layer. However, there are relatively few examples of magnetic insulators that can be synthesized with surface qualities that would allow these smooth interfaces and precisely tuned interfacial magnetic exchange coupling, which might be applicable at room temperature. In this work, we demonstrate an example of how the configurational complexity in the magnetic insulator layer can be used to realize these properties. The entropy-assisted synthesis is used to create single-crystal (Mg0.2Ni0.2Fe0.2Co0.2Cu0.2)Fe2O4 films on substrates spanning a range of strain states. These films show smooth surfaces, high resistivity, and strong magnetic responses at room temperature. Local and global magnetic measurements further demonstrate how strain can be used to manipulate the magnetic texture and anisotropy. These findings provide insight into how precise magnetic responses can be designed using compositionally complex materials that may find application in next-generation magnetic devices.
RESUMO
Transition metal stannides are usually semiconductors with a narrow band gap. We report experimental investigation on metallic Ir3Sn7-xMnx(x= 0 and 0.56). Single crystal x-ray diffraction refinement indicates that Ir3Sn7-xMnxcrystals form a cubic structure (space groupIm3Ìm) with the lattice parametera= 9.362(4) Å forx= 0 and 9.328(6) Å forx= 0.56. The electrical resistivity shows metallic behavior between 2 K and 300 K withT2dependence atT< 30 K forx= 0, reflecting the Fermi-liquid ground state. While Ir3Sn7exhibits weak diamagnetism, partial substitution of Sn by Mn results in spin glass behavior in Ir3Sn7-xMnxbelowTgâ¼ 13 K forx= 0.56. Remarkably, an upturn in the resistivity is observed inx= 0.56 below â¼2Tg, suggesting strong spin fluctuation. This fluctuation is suppressed by the application of magnetic field, which is reflected in the observation of negative magnetoresistance. The unusual properties that emerge due to Mn doping are discussed.
RESUMO
The layered transition-metal dichalcogenide PdTe2has been discovered to possess bulk Dirac points as well as topological surface states. By measuring the magnetization (up to 7 T) and magnetic torque (up to 35 T) in single crystalline PdTe2, we observe distinct de Haas-van Alphen (dHvA) oscillations. Eight frequencies are identified withH||c, with two low frequencies (Fα= 8 T andFß= 117 T) dominating the spectrum. The effective masses obtained by fitting the Lifshitz-Kosevich (LK) equation to the data aremα*=0.059m0andmß*=0.067m0wherem0is the free electron mass. The corresponding Landau fan diagrams allow the determination of the Berry phase for these oscillations resulting in values of â¼0.67πfor the 3D α band (hole-type) (down to the 1st Landau level) and â¼0.23π-0.73πfor the 3D ß band (electron-type) (down to the 3rd Landau level). By investigating the angular dependence of the dHvA oscillations, we find that the frequencies and the corresponding Berry phase (ΦB) vary with the field direction, with a ΦBâ¼ 0 whenHis 10°-30° away from theabplane for both α and ß bands. The multiple band nature of PdTe2is further confirmed from Hall effect measurements.
RESUMO
Spin glass (SG) is a magnetic state with spin structure incommensurate with lattice and charge. Fundamental understanding of its behavior has a profound impact on many technological problems. Here, we present a novel case of interface-induced spin glass behavior via self-assembly of single-crystalline NiO microcolumns in a single-crystalline NiFe2O4 matrix. Scanning transmission electron microscopy indicates that the hexagonal-shaped NiO columns are along their [211] direction and oriented along the [111] direction of the NiFe2O4 matrix. Magnetic force microscopy reveals magnetic anisotropy between NiO columns (antiferromagnetic transition temperature TN â¼ 523 K) and NiFe2O4 matrix (ferrimagnetic transition temperature TFI â¼ 860 K). This leads to spin disorder/frustration at atomically sharp NiFe2O4/NiO interfaces responsible for spin glass behavior below TSG â¼ 28 K. Our results demonstrate that self-assembly of magnetically distinct microstructures into another crystalline and magnetically ordered matrix is an effective way to create novel spin states at interfaces.
RESUMO
Polar metals are commonly defined as metals with polar structural distortions. Strict symmetry restrictions make them an extremely rare breed as the structural constraints favor insulating over metallic phase. Moreover, no polar metals are known to be magnetic. Here we report on the realization of a magnetic polar metal phase in a BaTiO3/SrRuO3/BaTiO3 heterostructure. Electron microscopy reveals polar lattice distortions in three-unit-cells thick SrRuO3 between BaTiO3 layers. Electrical transport and magnetization measurements reveal that this heterostructure possesses a metallic phase with high conductivity and ferromagnetic ordering with high saturation moment. The high conductivity in the SrRuO3 layer can be attributed to the effect of electrostatic carrier accumulation induced by the BaTiO3 layers. Density-functional-theory calculations provide insights into the origin of the observed properties of the thin SrRuO3 film. The present results pave a way to design materials with desired functionalities at oxide interfaces.
RESUMO
While exploring novel magnetic semiconductors, the new phase Cr0.65Al1.35Se3 was discovered and characterized by both structural and physical properties. Cr0.65Al1.35Se3 was found to crystallize into orthorhombic CrGeTe3-type structure with space group Pnma (no. 62). Vacancies and mixed occupancies were tested, and the results show that one of the 4c sites accommodates a mixture of Cr and Al atoms, while the other 4c site is fully occupied by Al atoms. Unique structural features include a T-shaped channel network created from the edge-sharing Cr/Al@Se6 and Al@Se4 polyhedra and a zipper effect of the puckered Se atoms inside the columnar channels. The round peak observed in the temperature-dependent magnetic susceptibility (χg) plot at â¼8(1) K corresponds to the antiferromagnetic-type transition in Cr0.65Al1.35Se3. However, the positive θCW indicates an additional ferromagnetic interaction, which is highly likely due to the complex magnetic structure arising from the mixed Cr/Al occupancies on the 4c site. Electrical resistivity measurements confirm that Cr0.65Al1.35Se3 is a semimetal with a positive magnetoresistance. Here we present the characterization and determination of the crystal structure and physical properties for this new material.
RESUMO
A novel imidazolium-dysprosium-based magnetic nanomaterial, i.e. [C16mim]5[Dy(SCN)8] nanoGUMBOS (nanomaterials fabricated from a group of uniform material based on organic salts), was prepared using a facile method for selective hemoglobin (Hb) isolation. In this nanomaterial, the imidazolium cation serves as a selective Hb affinity group, while dysprosium contributes paramagnetic properties. Through a combination of the advantages of ionic liquids, magnetic adsorbent, and nanoscale solid phase extraction, [C16mim]5[Dy(SCN)8] nanoGUMBOS exhibit great selectivity toward Hb and a favorable extraction efficiency of 95.4% when 1â¯mL of 100⯵g/mL Hb solution is processed with 0.6â¯mg of [C16mim]5[Dy(SCN)8] nanoGUMBOS. As the Hb concentration increased to 800⯵g/mL, the adsorption capacity approached â¼840⯵g/mg. The adsorbed protein is recovered with an elution efficiency of 87% by using 1% SDS solution. This novel nanoGUMBOS solid-phase extraction procedure was successfully applied to selective isolation of Hb from human whole blood and verified using SDS-PAGE. This simple strategy is a novel approach towards fabrication and use of a nanoadsorbent for selective isolation of proteins.
Assuntos
Disprósio/química , Hemoglobinas/isolamento & purificação , Nanoestruturas/química , Extração em Fase Sólida/métodos , Adsorção , Sangue , Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Hemoglobinas/química , Humanos , Imidazóis/química , Líquidos Iônicos/química , Fenômenos Magnéticos , Sais/química , Extração em Fase Sólida/instrumentaçãoRESUMO
Interfaces between transition metal oxides are known to exhibit emerging electronic and magnetic properties. Here we report intriguing magnetic phenomena for La2/3Sr1/3MnO3 films on an SrTiO3 (001) substrate (LSMO/STO), where the interface governs the macroscopic properties of the entire monolithic thin film. The interface is characterized on the atomic level utilizing scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS), and density functional theory (DFT) is employed to elucidate the physics. STEM-EELS reveals mixed interfacial stoichiometry, subtle lattice distortions, and oxidation-state changes. Magnetic measurements combined with DFT calculations demonstrate that a unique form of antiferromagnetic exchange coupling appears at the interface, generating a novel exchange spring-type interaction that results in a remarkable spontaneous magnetic reversal of the entire ferromagnetic film, and an inverted magnetic hysteresis, persisting above room temperature. Formal oxidation states derived from electron spectroscopy data expose the fact that interfacial oxidation states are not consistent with nominal charge counting. The present work demonstrates the necessity of atomically resolved electron microscopy and spectroscopy for interface studies. Theory demonstrates that interfacial nonstoichiometry is an essential ingredient, responsible for the observed physical properties. The DFT-calculated electrostatic potential is flat in both the LSMO and STO sides (no internal electric field) for both Sr-rich and stoichiometric interfaces, while the DFT-calculated charge density reveals no charge transfer/accumulation at the interface, indicating that oxidation-state changes do not necessarily reflect charge transfer and that the concept of polar mismatch is not applicable in metal-insulator polar-nonpolar interfaces.
RESUMO
We present a novel magnetic semiconductor, Cr2.37Ga3Se8, synthesized by partially replacing magnetic Cr3+ in antiferromagnetic Cr5+δSe8 with nonmagnetic Ga3+. The crystal structure of Cr2.37Ga3Se8 was determined by both powder and single-crystal X-ray diffraction. The title compound crystallizes in a monoclinic structure with space group C2/ m (No. 12). In Cr2.37Ga3Se8, the Cr atoms are surrounded by 6 Se atoms and form filled octahedral clusters, while Ga atoms are centered in the Se4 tetrahedral clusters. The two kinds of clusters pack alternatingly along the c-axis, which results in a quasi-two-dimensional layered structure. The magnetization ( M) measurement shows the development of short-range ferromagnetic coupling below the Curie-Weiss (CW) temperature θCW â¼ 92 K, evidenced by the nonlinear field dependence of M. However, the magnetic susceptibility exhibits a peak at low fields at â¼18 K, indicating the existence of an antiferromagnetic interaction as well. Electronic structure calculations using the WIEN2k program in the local spin density approximation indicate that the magnetism arises exclusively from local moments of the Cr atoms. The electrical resistivity measurement of the Cr2.37Ga3Se8 sample confirms that this material is a semiconductor with the band gap â¼0.26 eV. Meanwhile, the experimental band gap (â¼0.26 eV) is close to the theoretical prediction using the WIEN2k program (â¼0.35 eV).
RESUMO
Triple-layered Sr4Ru3O10 is a unique ferromagnet with the central RuO6 layer behaving differently from two outer layers both crystallographically and magnetically. We report that the partial substitution of Ru by smaller Mn gives rise to modification in crystal structure, electronic and magnetic properties of Sr4(Ru1-xMnx)3O10. Through the single crystal X-ray diffraction refinement, we find that (Ru/Mn)O6 octahedral rotation is no longer detectable at x ≥ 0.23, leading to the tetragonal structure. The magnetization measurements indicate the ferromagnetic transition temperature TC decreases from 105 K for x = 0 to 30 K for x = 0.41, with the reduced magnetic moment as well. Remarkably, Mn doping results in the change of magnetic anisotropy from the easy c axis in x = 0 to the easy ab plane seen in x = 0.34 and 0.41. Such change also removes the ab-plane metamagnetic transition observed in x = 0. Furthermore, the electrical resistivity increases with increasing x showing semiconducting behavior with Δ ~ 10 meV for x = 0.34 and 30 meV for x = 0.41. Under applied magnetic field, the magnetoresistance exhibits negative and linear field dependence in all current and field configurations. These results clearly indicate Sr4(Ru1-xMnx)3O10 is a novel ferromagnetic semiconductor with exotic magnetotransport properties.
RESUMO
In the search for superconductivity in a BaAu2Sb2-type monoclinic structure, we have successfully synthesized the new compound BaPt2Bi2, which crystallizes in the space group P21/m (No. 11; Pearson symbol mP10) according to a combination of powder and single-crystal X-ray diffraction and scanning electron microscopy. A sharp electrical resistivity drop and large diamagnetic magnetization below 2.0 K indicates it owns superconducting ground state. This makes BaPt2Bi2 the first reported superconductor in a monoclinic BaAu2Sb2-type structure, a previously unappreciated structure for superconductivity. First-principles calculations considering spin-orbit coupling indicate that Pt-Bi antibonding interaction plays a critical role in inducing superconductivity.
RESUMO
Ca10Pt3As8(Fe2As2)5 is a unique parent compound for superconductivity, which consists of both semiconducting Pt3As8 and metallic FeAs layers. We report the observation of superconductivity induced via chemical doping in either Ca site using rare-earth (RE) elements (RE = La, Gd) or Fe site using Pt. The interlayer distance and the normal-state physical properties of the doped system change correspondingly. The coupled changes include (1) superconducting transition temperature T c increases with increasing both doping concentration and interlayer distance, (2) our T c value is higher than previously reported maximum value for Pt doping in the Fe site, (3) both the normal-state in-plane resistivity and out-of-plane resistivity change from non-metallic to metallic behavior with increasing doping concentration and T c, and (4) the transverse in-plane magnetoresistance (MRab) changes from linear-field dependence to quadratic behavior upon increasing T c. For La-doped compound with the highest T c (~35 K), upper critical fields ([Formula: see text], [Formula: see text]), coherence lengths (ξ ab, ξ c), and in-plane penetration depth (λ ab) are estimated. We discuss the relationship between chemical doping, interlayer distance, and physical properties in this system.
RESUMO
The ability to predict hidden phases under extreme conditions is not only crucial to understanding and manipulating materials but it could also lead to insight into new phenomena and novel routes to synthesize new phases. This is especially true for Ruddlesden-Popper perovskite phases that possess interesting properties ranging from superconductivity and colossal magnetoresistance to photovoltaic and catalytic activities. In particular, the physical properties of the bilayer perovskite Sr3Ru2O7 at the surface are intimately tied to the rotation and tilt of the RuO6 octahedra. To take advantage of the extra degree of freedom associated with tilting we have performed first principles hybrid density functional simulations of uniaxial pressure applied along the c-axis of bulk Sr3Ru2O7 where we find that the octahedra become tilted, leading to two phase transitions. One is a structural transition at [Formula: see text]1.5 GPa, and the other is from a ferromagnetic (FM) metal to an antiferromagnetic (AFM) insulator at [Formula: see text]21 GPa whose AFM spin configuration is different from the AFM state near the FM ground state.
RESUMO
Interfaces between materials present unique opportunities for the discovery of intriguing quantum phenomena. Here, we explore the possibility that, in the case of superlattices, if one of the layers is made ultrathin, unexpected properties can be induced between the two bracketing interfaces. We pursue this objective by combining advanced growth and characterization techniques with theoretical calculations. Using prototype La2/3Sr1/3MnO3 (LSMO)/BaTiO3 (BTO) superlattices, we observe a structural evolution in the LSMO layers as a function of thickness. Atomic-resolution EM and spectroscopy reveal an unusual polar structure phase in ultrathin LSMO at a critical thickness caused by interfacing with the adjacent BTO layers, which is confirmed by first principles calculations. Most important is the fact that this polar phase is accompanied by reemergent ferromagnetism, making this system a potential candidate for ultrathin ferroelectrics with ferromagnetic ordering. Monte Carlo simulations illustrate the important role of spin-lattice coupling in LSMO. These results open up a conceptually intriguing recipe for developing functional ultrathin materials via interface-induced spin-lattice coupling.