Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Infect Dis ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640957

RESUMO

Chlamydia trachomatis (CT) is a sexually transmitted infection that can lead to adverse reproductive health outcomes. CT prevalence estimates are primarily derived from screening using nucleic acid amplification tests (NAATs). However, screening guidelines in the United States only include particular subpopulations, and NAATs only detect current infections. In contrast, seroassays identify past CT infections which are important for understanding the public health impacts of CT, including pelvic inflammatory disease and tubal factor infertility. Older seroassays have been plagued by low sensitivity and specificity and have not been validated using a consistent reference measure, making it challenging to compare studies, define the epidemiology of CT and determine the effectiveness of control programs. Newer seroassays have better performance characteristics. This narrative review summarizes the "state of the science" for CT seroassays that have been applied in epidemiologic studies and provides practical considerations for interpreting the literature and employing seroassays in future research.

2.
Vet Sci ; 10(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624300

RESUMO

Feline infectious peritonitis (FIP), caused by feline coronavirus (FcoV), is considered one of the most enigmatic diseases in cats. Developing effective drugs for FIP is crucial due to its global prevalence and severity. In this study, six antiviral drugs were tested for their cytotoxicity, cell viability, and antiviral efficacies in Crandell-Reese feline kidney cells. A cytotoxicity assay demonstrated that these drugs were safe to be used with essentially no cytotoxicity with concentrations as high as 250 µM for ruxolitinib; 125 µM for GS441524; 63 µM for teriflunomide, molnupiravir, and nirmatrelvir; and 16 µM for ritonavir. GS441524 and nirmatrelvir exhibited the least detrimental effects on the CRFK cells, with 50% cytotoxic concentration (CC50) values of 260.0 µM and 279.1 µM, respectively, while ritonavir showed high toxicity (CC50 = 39.9 µM). In the dose-response analysis, GS441524, nirmatrelvir, and molnupiravir demonstrated promising results with selectivity index values of 165.54, 113.67, and 29.27, respectively, against FIPV. Our study suggests that nirmatrelvir and molnupiravir hold potential for FIPV treatment and could serve as alternatives to GS441524. Continued research and development of antiviral drugs are essential to ensure the well-being of companion animals and improve our preparedness for future outbreaks of coronaviruses affecting animals and humans alike.

3.
J Infect Dis ; 224(12 Suppl 2): S86-S95, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396415

RESUMO

Detection of anti-Chlamydia trachomatis (Ctr) antibodies is compromised by cross-reactivity and poor sensitivity of classic Ctr-antigens. We discovered 48 strongly reactive peptide antigens of Ctr-specific B-cell epitopes from 21 immunodominant proteins. In this study, we review the utility of peptide assays for diagnosis of Ctr infections. By combining many of these Ctr-specific B-cell epitopes from several proteins in separate or mixed multipeptide assays, they achieved vastly superior assay sensitivity and specificity over standard enzyme-linked immunosorbent assays. Such multipeptide assays eliminate cross-reactivities (false positives) and correct for stochastic gaps in antibody responses (false negatives). More importantly, we developed and validated a novel microarray platform in which hundreds of peptides from many proteins are spotted in a single reaction well. This offers the possibility of high-throughput screening of many candidate peptides for routine serological fingerprinting of Ctr infections. Discovery of optimal sets of antibody responses that associate with clinical pelvic inflammatory disease (PID) may identify diagnostically useful PID biomarker antigens.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos de Linfócito B , Doença Inflamatória Pélvica/microbiologia , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Feminino , Humanos , Técnicas Imunoenzimáticas , Peptídeos/imunologia
4.
Pathogens ; 10(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375583

RESUMO

Chlamydia suis is an important, highly prevalent, and diverse obligate intracellular pathogen infecting pigs. In order to investigate the prevalence and diversity of C. suis in the U.S., 276 whole blood samples from feral swine were collected as well as 109 fecal swabs and 60 whole blood samples from domestic pigs. C. suis-specific peptide ELISA identified anti-C. suis antibodies in 13.0% of the blood of feral swine (26/276) and 80.0% of the domestic pigs (48/60). FRET-qPCR and DNA sequencing found C. suis DNA in 99.1% of the fecal swabs (108/109) and 21.7% of the whole blood (13/60) of the domestic pigs, but not in any of the assayed blood samples (0/267) in feral swine. Phylogenetic comparison of partial C. suis ompA gene sequences and C. suis-specific multilocus sequencing typing (MLST) revealed significant genetic diversity of the C. suis identified in this study. Highly genetically diverse C. suis strains are prevalent in domestic pigs in the USA. As crowding strongly enhances the frequency and intensity of highly prevalent Chlamydia infections in animals, less population density in feral swine than in domestic pigs may explain the significantly lower C. suis prevalence in feral swine. A future study is warranted to obtain C. suis DNA from feral swine to perform genetic diversity of C. suis between commercial and feral pigs.

5.
Parasit Vectors ; 13(1): 581, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208186

RESUMO

BACKGROUND: The main vector and reservoir host of Rickettsia felis, an emerging human pathogen causing flea-borne spotted fever, is the cat flea Ctenocephalides felis. While cats have not been found to be infected with the organism, significant percentages of dogs from Australia and Africa are infected, indicating that they may be important mammalian reservoirs. The objective of this study was to determine the presence of R. felis DNA in the blood of domestic dogs and cats in the USA. METHODS: Three previously validated PCR assays for R. felis and DNA sequencing were performed on blood samples obtained from clinically ill domestic cats and dogs from 45 states (2008-2020) in the USA. The blood samples had been submitted for the diagnosis of various tick-borne diseases in dogs and feline infectious peritonitis virus, feline immunodeficiency virus, and Bartonella spp. in cats. Phylogenetic comparisons were performed on the gltA nucleotide sequences obtained in the study and those reported for R. felis and R. felis-like organisms. RESULTS: Low copy numbers of R. felis DNA (around 100 copies/ml whole blood) were found in four cats (4/752, 0.53%) and three dogs (3/777, 0.39%). The very low levels of infection in clinically ill animals is consistent with R. felis being an unlikely cause of disease in naturally infected dogs and cats. The low copy numbers we found emphasize the requirement for very sensitive PCRs in prevalence studies. CONCLUSIONS: The low prevalence of naturally infected PCR-positive cats is further evidence that cats are unlikely to be important reservoirs of R. felis. Similarly, the low prevalence in dogs suggests they are not important reservoirs in the USA. Investigations should continue into the role other mammalian species may be playing in the epidemiology of R. felis infections.


Assuntos
Animais Domésticos/microbiologia , Doenças do Gato/microbiologia , DNA Bacteriano/sangue , Doenças do Cão/microbiologia , Infecções por Rickettsia/veterinária , Rickettsia felis/genética , Animais , Animais Domésticos/sangue , Doenças do Gato/epidemiologia , Gatos , Estudos Transversais , Ctenocephalides/microbiologia , Doenças do Cão/epidemiologia , Cães , Infestações por Pulgas , Filogenia , Infecções por Rickettsia/sangue , Infecções por Rickettsia/epidemiologia , Rickettsia felis/classificação , Análise de Sequência de DNA , Estados Unidos
6.
Vaccines (Basel) ; 8(3)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630694

RESUMO

Chlamydia trachomatis (Ct) infections are the most frequent bacterial sexually transmitted disease, and they can lead to ectopic pregnancy and infertility. Despite these detrimental long-term sequelae, a vaccine is not available. Success in preclinical animal studies is essential for vaccines to move to human clinical trials. Pigs are the natural host to Chlamydia suis (Cs)-a chlamydia species closely related to Ct, and are susceptible to Ct, making them a valuable animal model for Ct vaccine development. Before making it onto market, Ct vaccine candidates must show efficacy in a high-risk human population. The high prevalence of human Ct infection combined with the fact that natural infection does not result in sterilizing immunity, results in people at risk likely having been pre-exposed, and thus having some level of underlying non-protective immunity. Like human Ct, Cs is highly prevalent in outbred pigs. Therefore, the goal of this study was to model a trial in pre-exposed humans, and to determine the immunogenicity and efficacy of intranasal Cs vaccination in pre-exposed outbred pigs. The vaccine candidates consisted of UV-inactivated Cs particles in the presence or absence of an adjuvant (TriAdj). In this study, both groups of vaccinated pigs had a lower Cs burden compared to the non-vaccinated group; especially the TriAdj group induced the differentiation of CD4+ cells into tissue-trafficking CCR7- IFN-γ-producing effector memory T cells. These results indicate that Cs vaccination of pre-exposed pigs effectively boosts a non-protective immune response induced by natural infection; moreover, they suggest that a similar approach could be applied to human vaccine trials.

7.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105329

RESUMO

Flies are well-known vectors of bacterial pathogens, but there are little data on their role in spreading microbial community and antimicrobial resistance. In this study, we compared the bacterial community, antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in flies with those in the feces of sympatric animals. A 16S rRNA-based microbial analysis identified 23 bacterial phyla in fecal samples and 25 phyla in flies; all the phyla identified in the fecal samples were also found in the flies. Bray-Curtis dissimilarity analysis showed that the microbiota of the flies were more similar to the microbiota of the feces of their sympatric animals than those of the feces from the three other animal species studied. The qPCR array amplified 276 ARGs/MGEs in fecal samples, and 216 ARGs/MGEs in the flies, while 198 of these genes were identified in both flies and feces. Long-term studies with larger sample numbers from more geospatially distinct populations and infection trials are indicated to further evaluate the possibility of flies as sentinels for antimicrobial resistance.


Assuntos
Antibacterianos , Microbiota , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fezes , Genes Bacterianos , Sequências Repetitivas Dispersas , RNA Ribossômico 16S/genética
8.
Sci Rep ; 9(1): 15078, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636331

RESUMO

Cross-reactivity of classical chlamydial antigens compromises Chlamydia (C.) pneumoniae serology. By testing with 185 human antisera, we expanded 18 previously discovered C. pneumoniae-specific B-cell epitopes to 48 peptide antigens from 12 C. pneumoniae immunodominant proteins. For specific detection of antibodies against C. pneumoniae, we developed novel ELISAs with strongly reactive individual peptide antigens and mixtures of these peptides. By comparison to a composite reference standard (CRS) for anti-C. pneumoniae antibody status of human sera, the top-performing CpnMixF12 peptide assay showed 91% sensitivity at 95% specificity, significantly higher than 4 commercial anti-C. pneumoniae IgG ELISAs (36-12% sensitivity at 95% specificity). Human C. pneumoniae (Cpn) and C. trachomatis (Ctr) seroreactivity was 54% biased towards co-positivity in commercial Cpn and Ctr ELISAs, but unbiased in Cpn and Ctr peptide antibody assays, suggesting severe cross-reactivity of commercial ELISAs. Using hyperimmune mouse sera against each of 11 Chlamydia spp., we confirm that commercial Cpn and Ctr ELISA antigens are cross-reactive among all Chlamydia spp., but Cpn and Ctr peptide antigens react only with antisera against the cognate chlamydial species. With simultaneously high specificity and sensitivity, and convenient use for non-specialized laboratories, these ELISAs have the potential to improve serodiagnosis of C. pneumoniae infection.


Assuntos
Chlamydophila pneumoniae/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Peptídeos/sangue , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/sangue , Linfócitos B/imunologia , Sequência Conservada , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Camundongos , Padrões de Referência
9.
Vet Microbiol ; 232: 22-29, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31030841

RESUMO

Chlamydia (C.) pecorum is an obligate intracellular bacterium that infects and causes disease in a broad range of animal hosts. Molecular studies have revealed that this pathogen is genetically diverse with certain isolates linked to different disease outcomes. Limited in vitro or in vivo data exist to support these observations, further hampering efforts to improve our understanding of C. pecorum pathogenesis. In this study, we evaluated whether genetically distinct C. pecorum isolates (IPA, E58, 1710S, W73, JP-1-751) display different in vitro growth phenotypes in different mammalian epithelial and immune cells. In McCoy cells, shorter lag phases were observed for W73 and JP-1-751 isolates. Significantly smaller inclusions were observed for the naturally plasmid-free E58 isolate. C. pecorum isolates of bovine (E58) and ovine origin (IPA, W73, JP-1-751) grew faster in bovine cells compared to a porcine isolate (1710S). C. pecorum isolates could infect but appear not able to complete their developmental cycle in bovine peripheral neutrophil granulocytes. All isolates, except 1710S, could multiply in bovine monocyte-derived macrophages. These results reveal potentially important phenotypic differences that will help to understand the pathogenesis of C. pecorum in vivo and to identify C. pecorum virulence factors.


Assuntos
Chlamydia/crescimento & desenvolvimento , Chlamydia/genética , Células Epiteliais/microbiologia , Granulócitos/microbiologia , Animais , Bovinos , Variação Genética , Camundongos , Filogenia , Células RAW 264.7 , Ovinos , Suínos
10.
Vet Microbiol ; 230: 90-94, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827411

RESUMO

Chlamydia gallinacea is an endemic Chlamydia agent in poultry with a worldwide distribution. The aim of this study was to investigate whether C. gallinacea can be transmitted via fecal-oral, respiratory and vertical routes. After co-housing with C. gallinacea-inoculated broilers (n = 10) for 15 days, over 90.0% of SPF broilers (n = 10) became C. gallinacea-positive in their oropharyngeal and cloacal swabs. Connection of isolators with ventilation tubing resulted in transmission of infectious bronchitis virus, but not of C. gallinacea, from infected broilers in one isolator to uninfected ones in the other isolator. Chlamydia-qPCR determined that 97.6% of shells of embryonated eggs (287/294) from a breeding farm were positive for C. gallinacea. C. gallinacea positivity in egg albumen increased significantly from 7.6% (10/128) before incubating to 44.4% (8/18) of 7-day incubation, and from 5.5% (7/128) to 38.9% (7/18) in egg yolk. After incubating for 19 days, C. gallinacea DNA was detected in heart (5/55, 9.1%), liver (3/55, 5.5%), spleen (7/55, 12.7%), lung (6/55, 10.1%), kidney (8/55; 14.5%) and intestine (4/55, 7.3%) of chicken embryos. Taken together, our data indicate that C. gallinacea can be efficiently transmitted by the fecal-oral route, but not via aerosol. Additionally, vertical transmission can occur via penetration of C. gallinacea from eggshell to albumen, yolk, and the growing embryo. Our findings provide essential information for the control of C. gallinacea in poultry farms.


Assuntos
Galinhas/microbiologia , Infecções por Chlamydia/veterinária , Fezes/microbiologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Boca/microbiologia , Doenças das Aves Domésticas/transmissão , Animais , Chlamydia/genética , Infecções por Chlamydia/transmissão , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Casca de Ovo/microbiologia , Coração/microbiologia , Fígado/microbiologia , Ovalbumina , Óvulo/microbiologia , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia
11.
mSphere ; 3(6)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404936

RESUMO

Sensitive and specific detection of anti-Chlamydia trachomatis antibodies in standard enzyme-linked immunosorbent assays (ELISAs) is compromised by cross-reactivity and poor sensitivity of classical C.trachomatis antigens. Previously, we discovered 48 strongly reactive peptide antigens of C. trachomatis-specific B-cell epitopes from 21 immunodominant proteins. By comprehensive individual testing of 11 top-ranked peptide antigens, we found very high sensitivity and specificity for detection of anti-C. trachomatis antibodies in chemiluminescent ELISAs. The current study established a labor-saving colorimetric ELISA by using a mixture of 12 strongly reactive C. trachomatis peptide antigens (Ctr Mix1) in a single well/serum rather than assaying reactivity to each individual peptide. For performance evaluation, we used a simulated population of 212 anti-C. trachomatis antibody-positive and -negative sera from 125 women with NAAT-confirmed active C. trachomatis infection and from 87 healthy women at low risk for C. trachomatis infection. In comparison to a composite reference standard (CRS) for anti-C. trachomatis antibody status, the Ctr Mix1 IgG ELISA achieved 93.9% sensitivity, significantly superior to the 49% to 79% sensitivities of four commercial anti-C. trachomatis IgG ELISAs, and 98% specificity of all tested assays. Compared to the labor-intensive individual peptide testing, this mixed peptide ELISA retained high specificity with only marginal, ∼5% sensitivity loss. By ROC-AUC, likelihood ratio, and predictive value analyses, the Ctr Mix1 ELISA performed satisfactorily at 10% to 75% prevalence range of anti-C. trachomatis antibodies but significantly better than commercial ELISAs. Thus, the labor-saving mixed peptide colorimetric ELISA format provides simultaneously high specificity and sensitivity for detection of anti-C. trachomatis antibodies.IMPORTANCE For detection of anti-C. trachomatis antibodies by serological assays, use of classical chlamydial antigens results in high cross-reactivity and poor sensitivity. Previously, we discovered 48 strongly reactive peptide antigens of C. trachomatis-specific B-cell epitopes from 21 immunodominant proteins, and individual testing and combined scoring of 5 to 11 peptide antigens provided highly sensitive and specific detection of anti-C. trachomatis antibodies in chemiluminescent ELISAs. To simplify this method, this study established a single-well labor-saving colorimetric ELISA using a mixture of 12 strongly reactive C. trachomatis peptide antigens (Ctr Mix1) for detection of anti-C. trachomatis antibodies. This Ctr Mix1 ELISA (94% sensitivity and 98% specificity) outperformed 4 commercial ELISAs (49% to 79% sensitivity and 98% specificity). This ELISA can be easily implemented and commercialized, with convenient setup for use in nonspecialized laboratories. Thus, this mixed peptide assay with superior specificity and sensitivity will improve serodiagnosis of C. trachomatis infections.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/imunologia , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Curva ROC , Sensibilidade e Especificidade
12.
mSphere ; 3(4)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068558

RESUMO

Chlamydia species-specific serology is compromised by cross-reactivity of the gold standard microimmunofluorescence (MIF) or commercial enzyme-linked immunosorbent assays (ELISAs). This study was conducted to discover novel C. trachomatis-specific peptide antigens that were recognized only by the antibody response of the natural human host. We evaluated a library of 271 peptide antigens from immunodominant C. trachomatis proteins by reactivity with 125 C. trachomatis antibody-positive sera from women with PCR-confirmed C. trachomatis infection and 17 C. trachomatis antibody-negative sera from low-risk women never diagnosed with C. trachomatis infection. These C. trachomatis peptide antigens had been predicted in silico to contain B cell epitopes but had been nonreactive with mouse hyperimmune sera against C. trachomatis We discovered 38 novel human host-dependent antigens from 20 immunodominant C. trachomatis proteins (PmpD, IncE, IncG, CT529, CT618, CT442, TarP, CT143, CT813, CT795, CT223, PmpC, CT875, CT579, LcrE, IncA, CT226, CT694, Hsp60, and pGP3). Using these human sera, we also confirmed 10 C. trachomatis B cell epitopes from 6 immunodominant C. trachomatis proteins (OmpA, PmpD, IncE, IncG, CT529, and CT618) as host species-independent epitopes that had been previously identified by their reactivity with mouse hyperimmune sera against C. trachomatis ELISA reactivities against these peptides correlated strongly with the C. trachomatis microimmunofluorescence (MIF) text results (Pearson's correlation coefficient [R] = 0.80; P < 10-6). These C. trachomatis peptide antigens do not cross-react with antibodies against other Chlamydia species and are therefore suitable for species-specific detection of antibodies against C. trachomatis This study identified an extended set of peptide antigens for simple C. trachomatis-specific ELISA serology.IMPORTANCE Current serological assays for species-specific detection of anti-Chlamydia species antibodies suffer from well-known shortcomings in specificity and ease of use. Due to the high prevalences of both anti-C. trachomatis and anti-C. pneumoniae antibodies in human populations, species-specific serology is unreliable. Therefore, novel specific and simple assays for chlamydial serology are urgently needed. Conventional antigens are problematic due to extensive cross-reactivity within Chlamydia spp. Using accurate B cell epitope prediction and a robust peptide ELISA methodology developed in our laboratory, we identified immunodominant C. trachomatis B cell epitopes by screening performed with sera from C. trachomatis-infected women. We discovered 38 novel human host-dependent antigens from 20 immunodominant C. trachomatis proteins, in addition to confirming 10 host-independent mouse serum peptide antigens that had been identified previously. This extended set of highly specific C. trachomatis peptide antigens can be used in simple ELISA or multiplexed microarray formats and will provide high specificity and sensitivity to human C. trachomatis serodiagnosis.


Assuntos
Antígenos de Bactérias/imunologia , Chlamydia trachomatis/imunologia , Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes/imunologia , Animais , Anticorpos Antibacterianos/sangue , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Sensibilidade e Especificidade , Testes Sorológicos/métodos
13.
mSphere ; 3(4)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068559

RESUMO

Sensitive species-specific detection of anti-Chlamydia trachomatis antibodies is compromised by cross-reactivity of the C. trachomatis antigens used in standard microimmunofluorescence (MIF) testing and enzyme-linked immunosorbent assays (ELISAs). Previously, we discovered 48 strongly reactive C. trachomatis-specific B cell epitope peptides from 21 immunodominant proteins. Here we comprehensively evaluated the 11 top-ranked C. trachomatis-specific peptide antigens from 8 proteins for use in C. trachomatis serology. Sera from 125 women with nucleic acid amplification test (NAAT)-confirmed active C. trachomatis infection and from 49 healthy women with a low risk of C. trachomatis infection were used as anti-C. trachomatis antibody-positive and -negative sera. Results obtained for detection of IgG1, IgG3, and IgA1 antibodies against the 11 C. trachomatis peptide antigens were compared to results from 4 commercial anti-C. trachomatis IgG ELISAs. Using composite reference standards (CRS) of all assays for anti-C. trachomatis antibody status, commercial ELISAs detected antibodies in antibody-positive women with sensitivities of 51.5% to 64.8%. In contrast, a combination of the results of all 11 peptides detected IgG (IgG1 and IgG3) antibodies with 91.8% sensitivity, and a labor-saving combination of the 5 optimal peptides still detected antibodies in antibody-positive women with 86.5% sensitivity (all at 98% specificity). The superior performance of the combined peptide ELISAs was confirmed by area under the receiver operating characteristic curve (ROC-AUC), likelihood ratio, and predictive value analyses. The higher sensitivity of the peptide assays results from using multiple B cell epitopes of several C. trachomatis immunodominant proteins, including OmpA, compared to exclusively using the OmpA antigens used in commercial ELISAs. Thus, ELISAs with combined use of synthetic peptide antigens for C. trachomatis antibody detection have the advantage of simultaneous high sensitivity and high specificity.IMPORTANCE For detection of anti-Chlamydia trachomatis antibodies by serological assays, use of classical whole-organism chlamydial antigens results in high cross-reactivity. These antigens bind mainly antibodies against the major outer membrane protein (OmpA) and bind antibodies against other immunodominant non-OmpA proteins to a lesser extent, resulting in poor assay sensitivity. The specificity of C. trachomatis serology is also compromised by the high prevalence of cross-reactive anti-C. pneumoniae antibodies in human populations. We previously identified 48 highly specific C. trachomatis B cell epitope peptide antigens of 21 immunodominant proteins. This study validated peptide antigen-based novel ELISAs that provide highly specific and sensitive detection of anti-C. trachomatis antibodies. Compared to four commercial ELISAs that achieved only poor sensitivities (51.5% to 64.8%), the combined signals of 5 to 11 peptides provided high sensitivity (86.5% to 91.8%) at the same 98% specificity. Thus, by using multiple peptide antigens of immunodominant proteins, we created simple ELISAs with specificity and sensitivity superior to standard C. trachomatis serodiagnosis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos de Linfócito B/imunologia , Testes Sorológicos/métodos , Adolescente , Adulto , Infecções por Chlamydia/microbiologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Curva ROC , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Adulto Jovem
14.
Sci Rep ; 8(1): 4701, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549361

RESUMO

Serological analysis of Chlamydia (C.) spp. infections is still mainly based on micro-immunofluorescence and ELISA. To overcome the limitations of conventional serology, we have designed a novel microarray carrying 52 synthetic peptides representing B-cell epitopes from immunodominant proteins of all 11 chlamydial species. The new assay has been validated using monospecific mouse hyperimmune sera. Subsequently, serum samples from cattle, sheep and humans with a known history of chlamydial infection were examined. For instance, the specific humoral response of sheep to treatment with a C. abortus vaccine has been visualized against a background of C. pecorum carriership. In samples from humans, dual infection with C. trachomatis and C. pneumoniae could be demonstrated. The experiments revealed that the peptide microarray assay was capable of simultaneously identifying specific antibodies to each Chlamydia spp. The actual assay represents an open platform test that can be complemented through future advances in Chlamydia proteome research. The concept of the highly parallel multi-antigen microarray proven in this study has the potential to enhance our understanding of antibody responses by defining not only a single quantitative response, but also the pattern of this response. The added value of using peptide antigens will consist in unprecedented serodiagnostic specificity.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/classificação , Chlamydia trachomatis/isolamento & purificação , Fragmentos de Peptídeos/imunologia , Testes Sorológicos/métodos , Animais , Bovinos , Infecções por Chlamydia/sangue , Infecções por Chlamydia/imunologia , Humanos , Camundongos , Análise em Microsséries , Ovinos , Especificidade da Espécie
15.
J Feline Med Surg ; 20(4): 295-301, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28425327

RESUMO

Objectives The objectives of this study were to determine the prevalence of feline coronavirus (FCoV) viremia, and its replication in peripheral blood using quantitative RT-PCR (qRT-PCR) methodology in a population of 205 healthy shelter cats in Southern California, as well as to assess any possible connection to longitudinal development of feline infectious peritonitis (FIP). Methods The study was performed on buffy-coat samples from EDTA-anticoagulated whole blood samples of 205 healthy shelter cats. From 50 of these cats, fecal samples were also examined. FCoV genomic and subgenomic RNA in the buffy coats was amplified by a total FCoV RNA qRT-PCR. Evidence for FCoV replication in peripheral blood and feces was obtained by M gene mRNA qRT-PCR. Results Nine of 205 cats (4.4%) were viremic by the total FCoV RNA qRT-PCR, and one of these cats had evidence of peripheral FCoV blood replication by an FCoV mRNA qRT-PCR. The single cat with peripheral blood replication had a unique partial M gene sequence distinct from positive controls and previously published FCoV sequences. Neither seven of the nine viremic cats with follow-up nor the single cat with replicating FCoV with positive qRT-PCR results developed signs compatible with FIP within 6 months of sample collection. Conclusions and relevance FCoV viremia and peripheral blood replication in healthy shelter cats have a low prevalence and do not correlate with later development of FIP in this study population, but larger case-control studies evaluating the prognostic accuracy of the qRT-PCR assays are needed.


Assuntos
Coronavirus Felino/isolamento & purificação , Peritonite Infecciosa Felina/diagnóstico , Peritonite Infecciosa Felina/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Viremia/veterinária , Animais , California , Estudos de Casos e Controles , Gatos , Coronavirus Felino/genética , Estudos Transversais , Fezes/virologia
16.
BMC Genomics ; 18(1): 949, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212448

RESUMO

BACKGROUND: Chlamydia (C.) gallinacea is a recently identified bacterium that mainly infects domestic chickens. Demonstration of C. gallinacea in human atypical pneumonia suggests its zoonotic potential. Its prevalence in chickens exceeds that of C. psittaci, but genetic and genomic research on C. gallinacea is still at the beginning. In this study, we conducted whole-genome sequencing of C. gallinacea strain JX-1 isolated from an asymptomatic chicken, and comparative genomic analysis between C. gallinacea strains and related chlamydial species. RESULTS: The genome of C. gallinacea JX-1 was sequenced by single-molecule, real-time technology and is comprised of a 1,059,522-bp circular chromosome with an overall G + C content of 37.93% and sequence similarity of 99.4% to type strain 08-1274/3. In addition, a plasmid designated pJX-1, almost identical to p1274 of the type strain, except for two point mutations, was only found in field strains from chicken, but not in other hosts. In contrast to chlamydial species with notably variable polymorphic membrane protein (pmp) genes and plasticity zone (PZ), these regions were conserved in both C. gallinacea strains. There were 15 predicted pmp genes, but only B, A, E1, H, G1 and G2 were apparently intact in both strains. In comparison to chlamydial species where the PZ may be up to 50 kbp, C. gallinacea strains displayed gene content reduction in the PZ (14 kbp), with strain JX-1 having a premature STOP codon in the cytotoxin (tox) gene, while tox gene is intact in the type strain. In multilocus sequence typing (MLST), 15 C. gallinacea STs were identified among 25 strains based on cognate MLST allelic profiles of the concatenated sequences. The type strain and all Chinese strains belong to two distinct phylogenetic clades. Clade of the Chinese strains separated into 14 genetically distinct lineages, thus revealing considerable genetic diversity of C. gallinacea strains in China. CONCLUSIONS: In this first detailed comparative genomic analysis of C. gallinacea, we have provided evidence for substantial genetic diversity among C. gallinacea strains. How these genetic polymorphisms affect C. gallinacea biology and pathogenicity should be addressed in future studies that focus on phylogenetics and host adaption of this enigmatic bacterial agent.


Assuntos
Proteínas de Bactérias/genética , Galinhas , Infecções por Chlamydia/veterinária , Chlamydia/genética , Variação Genética , Genoma Bacteriano , Doenças das Aves Domésticas/microbiologia , Animais , China , Chlamydia/patogenicidade , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Genótipo , Epidemiologia Molecular , Tipagem de Sequências Multilocus/métodos , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética , Análise de Sequência de DNA/métodos
17.
BMC Vet Res ; 13(1): 370, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191191

RESUMO

BACKGROUND: Chlamydia suis is an important, globally distributed, highly prevalent and diverse obligate intracellular pathogen infecting pigs. To investigate the prevalence and genetic diversity of C. suis in China, 2,137 nasal, conjunctival, and rectal swabs as well as whole blood and lung samples of pigs were collected in 19 regions from ten provinces of China in this study. RESULTS: We report an overall positivity of 62.4% (1,334/2,137) of C. suis following screening by Chlamydia spp. 23S rRNA-based FRET-PCR and high-resolution melting curve analysis and confirmatory sequencing. For C. suis-positive samples, 33.3 % of whole blood and 62.5% of rectal swabs were found to be positive for the C. suis tetR(C) gene, while 13.3% of whole blood and 87.0% of rectal swabs were positive for the C. suis tet(C) gene. Phylogenetic comparison of partial C. suis ompA gene sequences revealed significant genetic diversity in the C. suis strains. This genetic diversity was confirmed by C. suis-specific multilocus sequence typing (MLST), which identified 26 novel sequence types among 27 examined strains. Tanglegrams based on MLST and ompA sequences provided evidence of C. suis recombination amongst the strains analyzed. CONCLUSIONS: Genetically highly diverse C. suis strains are exceedingly prevalent in pigs. As it stands, the potential pathogenic effect of C. suis on pig health and production of C. suis remains unclear and will be the subject of further investigations. Further study is also required to address the transmission of C. suis between pigs and the risk of 'spill-over' and 'spill-back' of infections to wild animals and humans.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/genética , Chlamydia/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Infecções Assintomáticas , Sangue/microbiologia , China/epidemiologia , Chlamydia/classificação , Infecções por Chlamydia/genética , Túnica Conjuntiva/microbiologia , Transferência Ressonante de Energia de Fluorescência/veterinária , Variação Genética , Pulmão/microbiologia , Cavidade Nasal/microbiologia , Filogenia , RNA Ribossômico 23S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reto/microbiologia , Suínos , Doenças dos Suínos/epidemiologia
18.
Vet Microbiol ; 193: 93-9, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-27599935

RESUMO

To investigate the prevalence and diversity of bovine Chlamydia spp. in cattle, whole blood from dairy and beef cattle in 11 provinces of China (n=2003) and vaginal swabs, whole blood samples, feces, milk samples from cows in a Yangzhou dairy farm (n=108) were examined using genus- and species-specific PCRs. In cattle from 11 provinces, 2.4% (48/2003) of whole-blood samples were positive for Chlamydia spp., and four Chlamydia species (C. pneumoniae, 41.7%, 20/48; C. psittaci, 22.9%, 11/48; C. gallinacea, 20.8%, 10/48; C. pecorum, 6.3%, 3/48) were identified. In a further study on a Yangzhou dairy farm, 64.8% (70/108) of the cows were positive for Chlamydia spp. C. pecorum was the intestinal endemic species (51/51, 100%), and C. gallinacea was the most frequent species in vaginal swabs (24/27, 88.9%), whole blood buffy coats (5/8, 62.5%) and milk (4/6, 66.7%). C. psittaci and C. pneumoniae were infrequently detected. DNA sequencing of the ompA gene demonstrated the presence of multiple in-herd C. pecorum serovars and single C. gallinacea and C. psittaci serovars which were identical with those of poultry from Yangzhou. This is the first report of C. gallinacea and C. pneumoniae in cattle. Further study is required to address the transmission of Chlamydia spp., in particular of C. gallinacea and C. pneumoniae from their natural hosts, and their potential pathogenic effect on health and production of cattle.


Assuntos
Doenças dos Bovinos/epidemiologia , Infecções por Chlamydia/veterinária , Chlamydia/isolamento & purificação , Leite/microbiologia , Animais , Sangue/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , China/epidemiologia , Chlamydia/genética , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/microbiologia , Fezes/microbiologia , Feminino , Cabelo/microbiologia , Intestinos/microbiologia , Masculino , Filogenia , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
19.
Sci Rep ; 6: 30015, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27445010

RESUMO

The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Aviária/virologia , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Galinhas , China , Cloaca/virologia , Primers do DNA/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Boca/virologia , Sondas de Oligonucleotídeos/genética , Faringe/virologia
20.
J Biol Chem ; 291(28): 14585-99, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189949

RESUMO

X-ray crystallography has shown that an antibody paratope typically binds 15-22 amino acids (aa) of an epitope, of which 2-5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6-11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7-12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16-30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação de Anticorpos , Bovinos , Epitopos de Linfócito B/química , Humanos , Aprendizado de Máquina , Camundongos , Modelos Imunológicos , Peptídeos/química , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA