Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Bioorg Chem ; 153: 107789, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39250850

RESUMO

Recently, P218, a new flexible antifolate targeting Plasmodium falciparum dihydrofolate reductase (PfDHFR), has entered its clinical trial with good safety profile and effective Pf infection prevention. However, it carries a free carboxyl terminal, which is hydrophilic and prone to metabolic glucuronidation. Here, a new series of P218 analogues carrying butyrolactone has been synthesized with the purpose of enhancing lipophilicity and minimizing metabolic instability. The inhibition constants against the mutant PfDHFR enzymes are in sub-nanomolar level and the antimalarial activity against antifolate-resistant parasites are in the low micromolar range. The crystal structure of the most potent analogue LA1 bound enzyme complex indicates interaction with multiple residues, including Arg122 and Phe116 in the active site. In vitro log D7.4 and kinetic solubility confirmed a higher lipophilicity of this butyrolactone series as compared to P218. These outcomes suggest the possibility to further develop butyrolactone derivatives as non-carboxyl antiplasmodial antifolates.

2.
Mol Omics ; 20(9): 584-594, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39262389

RESUMO

The natural product 9-methoxystrobilurin G (9MG) from Favolaschia spp basidiomycetes is a potent and selective antimalarial. The mechanism of action of 9MG is unknown. We induced 9MG resistance in Plasmodium falciparum 3D7 and Dd2 strains and identified mutations associated with resistance by genome sequencing. All 9MG-resistant clones possessed missense mutations in the cytochrome b (CYTB) gene, a key component of mitochondrial complex III. The mutations map to the quinol oxidation site of CYTB, which is also the target of antimalarials such as atovaquone. In a complementary approach to identify protein targets of 9MG, a photoactivatable derivative of 9MG was synthesized and applied in chemoproteomic-based target profiling. Three components of mitochondrial complex III (QCR7, QCR9, and COX15) were specifically enriched consistent with 9MG targeting CYTB and complex III function in P. falciparum. Inhibition of complex III activity by 9MG was confirmed by ubiquinone cytochrome c reductase assay using P. falciparum extract. The findings from this study may be useful for developing novel antimalarials targeting CYTB.


Assuntos
Antimaláricos , Citocromos b , Complexo III da Cadeia de Transporte de Elétrons , Plasmodium falciparum , Estrobilurinas , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Citocromos b/genética , Citocromos b/metabolismo , Estrobilurinas/farmacologia , Estrobilurinas/química , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Resistência a Medicamentos/genética , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores
3.
Acta Trop ; 258: 107360, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142549

RESUMO

A new superior bacteria complementation model was achieved for testing antifolate compounds and investigating antifolate resistance in the dihydrofolate reductase (DHFR) enzyme of the malaria parasite. Earlier models depended on the addition of trimethoprim (TMP) to chemically suppress the host Escherichia coli (Ec) DHFR function. However, incomplete suppression of EcDHFR and potential interference of antibiotics needed to maintain plasmids for complementary gene expression can complicate the interpretations. To overcome such limitations, the folA (F) and thyA (T) genes were genetically knocked out (Δ) in E. coli BL21(DE3). The resulting EcΔFΔT cells were thymidine auxotroph where thymidine supplementation or functional complementation with heterologous DHFR-thymidylate synthase (TS) is needed to restore the loss of gene functions. When tested against pyrimethamine (PYR) and its analogs designed to target Plasmodium falciparum (Pf) DHFR-TS, the 50 % inhibitory concentration values obtained from EcΔFΔT surrogates expressing wildtype (PfTM4) or double mutant (PfK1) DHFR-TS showed strong correlations to the results obtained from the standard in vitro P. falciparum growth inhibition assay. Interestingly, while TMP had little effect on the susceptibility to PYR and analogs in EcΔFΔT expressing PfDHFR-TS, it hypersensitized the chemically knockdown E. coli BL21(DE3) expressing PfTM4 DHFR-TS but desensitized the one carrying PfK1 DHFR-TS. The low intrinsic expression level of PfTM4 in E. coli BL21(DE3) by western blot analysis may explain the hypersensitive to antifolates of chemical knockdown bacteria surrogate. These results demonstrated the usefulness of EcΔFΔT surrogate as a new tool for antifolate antimalarial screening with potential application for investigation of antifolate resistance mechanism.


Assuntos
Escherichia coli , Antagonistas do Ácido Fólico , Técnicas de Inativação de Genes , Plasmodium falciparum , Pirimetamina , Tetra-Hidrofolato Desidrogenase , Timidilato Sintase , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antagonistas do Ácido Fólico/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Antimaláricos/farmacologia , Concentração Inibidora 50 , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resistência a Medicamentos/genética , Teste de Complementação Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos
4.
RSC Med Chem ; 15(7): 2496-2507, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39026651

RESUMO

As pregnant women and young children remain the first victims of malaria worldwide, the search for new antimalarials has been focusing on compounds with a high safety profile and extended efficacy. In a previous study, a rigid biphenyl PfDHFR inhibitor was developed by fragment-based screening, displaying sub nM enzyme inhibition but poor antiparasitic activity, presumably due to its low flexibility. Here, we report a new series of compounds that combines the biphenyl fragment with a flexible linker. Interestingly, their mode of binding differs from previously reported compounds, taking advantage of strong hydrophobic interaction. The new flexible biphenyl compounds show overall improved antiparasitic activity compared to rigid ones, with the best compound displaying a 2 nM antiplasmodial IC50 and suitable drug-like properties. This confirms the importance of compound flexibility for antimalarial activity and opens the way to new opportunities for antimalarial drug design.

5.
Bioorg Chem ; 146: 107307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537337

RESUMO

In this study, two linear and corresponding cyclic heptapeptide versions of mortiamide A-lugdunin hybrids were designed and synthesized by integrating an anti-malarial peptide epitope derived from Mortiamide A, combined with four residues known for their membrane interactions. Using this synthetic strategy, the sequence of mortiamide A was partly re-engineered with an epitope sequence of lugdunin along with an amino acid replacement using all-L and D/L configurations. Importantly, the re-engineered cyclic mortiamides with all-L (3) and D/L (4) configurations exhibited promising anti-malarial activities against the P. falciparum drug-sensitive TM4/8 strain with half-maximal inhibitory concentration (IC50) values of 6.2 ± 0.5 and 4.8 ± 0.1 µM, respectively. Additionally, they exhibited anti-malarial activities against the P. falciparum multidrug-resistant V1/S strain with IC50 values of 5.0 ± 2.6 and 3.7 ± 0.7 µM, respectively. Interestingly, a linear re-engineered mortiamide with D/L configuration (2) exhibited promising anti-malarial activities, surpassing those of the re-engineered cyclic mortiamides (3 and 4), against both the P. falciparum sensitive TM4/8 and multidrug-resistant V1/S strains with IC50 values of 3.6 ± 0.5 and 2.8 ± 0.7 µM (IC50 of Mortiamide A = 7.85 ± 0.97, 5.31 ± 0.24 µM against 3D7 and Dd2 strains) without any cytotoxicity at >100 µM. The presence of D/L forms in a linear structure significantly impacted the anti-malarial activity against both the P. falciparum sensitive TM4/8 strain and the multidrug-resistant V1/S strain.


Assuntos
Antimaláricos , Malária Falciparum , Peptídeos Cíclicos , Plasmodium , Tiazolidinas , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Epitopos
6.
PeerJ ; 12: e16595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239295

RESUMO

Background: Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods: We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results: DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Plasmodium falciparum/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase
7.
RSC Med Chem ; 14(9): 1755-1766, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731689

RESUMO

Plasmodium falciparum dihydrofolate reductase (PfDHFR), a historical target for antimalarials, has been considered compromised due to resistance inducing mutations caused by pyrimethamine (PYR) overexposure. The clinical candidate P218 has demonstrated that inhibitors could efficiently target both PYR-sensitive and PYR-resistant parasites through careful drug design. Yet, P218 clinical development has been limited by its pharmacokinetic profile, incompatible with single dose regimen. Herein, we report the design of new PfDHFR inhibitors using fragment-based design, aiming at improved lipophilicity and overall drug-like properties. Fragment-based screening identified hits binding in the pABA site of the enzyme. Using structure-guided design, hits were elaborated into leads by fragment linking with 2,4-diaminopyrimidine. Resulting compounds display nM range inhibition of both drug-sensitive and resistant PfDHFR, high selectivity against the human isoform, drug-like lipophilicity and metabolic stability. Compound 4 and its ester derivative 3 kill blood stage TM4/8.2 parasite at nM concentrations while showing no toxicity against Vero cells.

8.
PeerJ ; 11: e15187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131988

RESUMO

Background: The spread of artemisinin (ART)-resistant Plasmodium falciparum threatens the control of malaria. Mutations in the propeller domains of P. falciparum Kelch13 (k13) are strongly associated with ART resistance. Ferredoxin (Fd), a component of the ferredoxin/NADP+ reductase (Fd/FNR) redox system, is essential for isoprenoid precursor synthesis in the plasmodial apicoplast, which is important for K13-dependent hemoglobin trafficking and ART activation. Therefore, Fd is an antimalarial drug target and fd mutations may modulate ART sensitivity. We hypothesized that loss of Fd/FNR function enhances the effect of k13 mutation on ART resistance. Methods: In this study, methoxyamino chalcone (C3), an antimalarial compound that has been reported to inhibit the interaction of recombinant Fd and FNR proteins, was used as a chemical inhibitor of the Fd/FNR redox system. We investigated the inhibitory effects of dihydroartemisinin (DHA), C3, and iron chelators including deferiprone (DFP), 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and deferiprone-resveratrol hybrid (DFP-RVT) against wild-type (WT), k13 mutant, fd mutant, and k13 fd double mutant P. falciparum parasites. Furthermore, we investigated the pharmacological interaction of C3 with DHA, in which the iron chelators were used as reference ART antagonists. Results: C3 showed antimalarial potency similar to that of the iron chelators. As expected, combining DHA with C3 or iron chelators exhibited a moderately antagonistic effect. No differences were observed among the mutant parasites with respect to their sensitivity to C3, iron chelators, or the interactions of these compounds with DHA. Discussion: The data suggest that inhibitors of the Fd/FNR redox system should be avoided as ART partner drugs in ART combination therapy for treating malaria.


Assuntos
Antimaláricos , Chalcona , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Ferredoxinas/química , Chalcona/farmacologia , Deferiprona/farmacologia , Malária Falciparum/tratamento farmacológico , Ferredoxina-NADP Redutase , Quelantes de Ferro/farmacologia
9.
Int J Antimicrob Agents ; 62(1): 106838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160237

RESUMO

A major threat to the goal of eliminating malaria, particularly in Southeast Asia, is the spread of Plasmodium falciparum resistant to artemisinin-based combination therapies. P218 is a drug candidate designed to combat antifolate-sensitive and -resistant parasites. However, there is no evidence that P218 is effective against artemisinin-resistant P. falciparum. This report investigated the susceptibilities of 10 parasite isolates from Southeast Asia to P218 and other antimalarial drugs. All isolates with different levels of artemisinin resistance were genetically distinct from one another, although common haplotypes associated with antimalarial resistance were identified. All isolates were highly resistant to pyrimethamine, and none of them were significantly less sensitive to P218 than the pyrimethamine-resistant laboratory strain V1/S. Significant differences in sensitivity to other types of antimalarials (mefloquine, atovaquone and chloroquine) compared with V1/S were found for some isolates, although the differences were not clinically relevant. P218 is thus efficacious against multi-drug (including artemisinin-resistant P. falciparum.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum , Pirimetamina/farmacologia
10.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770770

RESUMO

New N-containing xanthone analogs of α-mangostin were synthesized via one-pot Smiles rearrangement. Using cesium carbonate in the presence of 2-chloroacetamide and catalytic potassium iodide, α-mangostin (1) was subsequently transformed in three steps to provide ether 2, amide 3, and amine 4 in good yields at an optimum ratio of 1:3:3, respectively. The evaluation of the biological activities of α-mangostin and analogs 2-4 was described. Amine 4 showed promising cytotoxicity against the non-small-cell lung cancer H460 cell line fourfold more potent than that of cisplatin. Both compounds 3 and 4 possessed antitrypanosomal properties against Trypanosoma brucei rhodesiense at a potency threefold stronger than that of α-mangostin. Furthermore, ether 2 gave potent SARS-CoV-2 main protease inhibition by suppressing 3-chymotrypsinlike protease (3CLpro) activity approximately threefold better than that of 1. Fragment molecular orbital method (FMO-RIMP2/PCM) indicated the improved binding interaction of 2 in the 3CLpro active site regarding an additional ether moiety. Thus, the series of N-containing α-mangostin analogs prospectively enhance druglike properties based on isosteric replacement and would be further studied as potential biotically active chemical entries, particularly for anti-lung-cancer, antitrypanosomal, and anti-SARS-CoV-2 main protease applications.


Assuntos
Antineoplásicos , COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , SARS-CoV-2/metabolismo , Antineoplásicos/farmacologia , Éteres , Peptídeo Hidrolases , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Antivirais
11.
J Biomol Struct Dyn ; 41(12): 5728-5743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35815526

RESUMO

Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target enzyme in malarial chemotherapy. An understanding of how novel inhibitors interact with wild-type (wtPfDHFR), quadruple-mutant (qmPfDHFR), and human (hDHFR) enzymes is required for the development of these compounds as antimalarials. This study is focused on a series of des-Cl and m-Cl phenyl analogs of pyrimethamine with various flexible 6-substituents. The interactions of these compounds with DHFR enzymes were investigated by 3 D-QSAR, MD simulations, MM-PBSA, and DFT calculations. CoMFA and CoMSIA models were developed with good predictive abilities for wtPfDHFR and qmPfDHFR. For hDHFR, CoMSIA models combined with clogP descriptor were successfully derived. Binding free energy using MM-PBSA and comparison of per residue decomposition energy analyses with the DFT method at M06-2X/6-31G ++(d,p) level of theory indicated that Asp54 and Phe58 play important roles in the binding of the most potent compound in the series (compound 27) with both wtPfDHFR and qmPfDHFR, whereas Arg59 and Arg122 were additionally found to interact with this inhibitor in qmPfDHFR. For hDHFR, the residues Glu30 and Phe34 but not Arg70, equivalent to Asp54, Phe58, and Arg122 in PfDHFR, also play role in compound 27 binding through strong hydrophobic interactions (Phe34) and hydrogen bond network with Glu30, Ile7, and Val115. From the key interactions identified in the DHFR-inhibitor complexes, a general scheme is proposed for designing new inhibitors selective for PfDHFR that is important for the development of novel antifolate antimalarials.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Humanos , Pirimetamina/farmacologia , Pirimetamina/química , Antimaláricos/química , Relação Quantitativa Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Plasmodium falciparum , Antagonistas do Ácido Fólico/química
12.
PLoS One ; 17(11): e0276956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331983

RESUMO

The Plasmodium falciparum human malaria parasite genome is incompletely annotated and does not accurately represent the transcriptomic diversity of this species. To address this need, we performed long-read transcriptomic sequencing. 5' capped mRNA was enriched from samples of total and nuclear-fractionated RNA from intra-erythrocytic stages and converted to cDNA library. The cDNA libraries were sequenced on PacBio and Nanopore long-read platforms. 12,495 novel isoforms were annotated from the data. Alternative 5' and 3' ends represent the majority of isoform events among the novel isoforms, with retained introns being the next most common event. The majority of alternative 5' ends correspond to genomic regions with features similar to those of the reference transcript 5' ends. However, a minority of alternative 5' ends showed markedly different features, including locations within protein-coding regions. Alternative 3' ends showed similar features to the reference transcript 3' ends, notably adenine-rich termination signals. Distinguishing features of retained introns could not be observed, except for a tendency towards shorter length and greater GC content compared with spliced introns. Expression of antisense and retained intron isoforms was detected at different intra-erythrocytic stages, suggesting developmental regulation of these isoform events. To gain insights into the possible functions of the novel isoforms, their protein-coding potential was assessed. Variants of P. falciparum proteins and novel proteins encoded by alternative open reading frames suggest that P. falciparum has a greater proteomic repertoire than the current annotation. We provide a catalog of annotated transcripts and encoded alternative proteins to support further studies on gene and protein regulation of this pathogen.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Transcriptoma , Plasmodium falciparum/genética , Parasitos/genética , Proteômica , Isoformas de Proteínas/genética , Processamento Alternativo , Malária Falciparum/genética
13.
ChemMedChem ; 17(22): e202200418, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36193872

RESUMO

A series of 5-[(phenethylamino)methyl]pyrimidine-2,4-diamines were assessed in silico as potential inhibitors of Plasmodium falciparum dihydrofolate reductase (PfDHFR), synthesised and tested for inhibitory activity against PfDHFR in vitro. The compounds displayed promising inhibitory activity against both wild-type (Ki 1.3-243 nM) and quadruple mutant (Ki 13-208 nM) PfDHFR in the biochemical enzyme assay, but were less potent in the whole-cell P. falciparum assay (IC50 (TM4/8.2) 0.4-28 µM; IC50 (V1S) 3.7-54 µM). Further investigation into the pharmacokinetic properties of these compounds may guide the development of more potent analogues.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Tetra-Hidrofolato Desidrogenase/química , Plasmodium falciparum , Simulação de Acoplamento Molecular , Antagonistas do Ácido Fólico/farmacologia , Antimaláricos/farmacologia , Antimaláricos/química , Diaminas/farmacologia , Pirimidinas/farmacologia
14.
Nat Commun ; 13(1): 6163, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257944

RESUMO

The global spread of drug resistance is a major obstacle to the treatment of Plasmodium falciparum malaria. The identification of drug-resistance genes is an essential step toward solving the problem of drug resistance. Here, we report functional screening as a new approach with which to identify drug-resistance genes in P. falciparum. Specifically, a high-coverage genomic library of a drug-resistant strain is directly generated in a drug-sensitive strain, and the resistance gene is then identified from this library using drug screening. In a pilot experiment using the strain Dd2, the known chloroquine-resistant gene pfcrt is identified using the developed approach, which proves our experimental concept. Furthermore, we identify multidrug-resistant transporter 7 (pfmdr7) as a novel candidate for a mefloquine-resistance gene from a field-isolated parasite; we suggest that its upregulation possibly confers the mefloquine resistance. These results show the usefulness of functional screening as means by which to identify drug-resistance genes.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Proteínas de Protozoários/genética , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina/farmacologia
15.
ACS Chem Biol ; 17(7): 1691-1702, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35715223

RESUMO

Pyrimethamine (Pyr), a known dihydrofolate reductase (DHFR) inhibitor, has long been used to treat toxoplasmosis caused by Toxoplasma gondii (Tg) infection. However, Pyr is effective only at high doses with associated toxicity to patients, calling for safer alternative treatments. In this study, we investigated a series of Pyr analogues, previously developed as DHFR inhibitors of Plasmodium falciparum bifunctional DHFR-thymidylate synthase (PfDHFR-TS), for their activity against T. gondii DHFR-TS (TgDHFR-TS). Of these, a set of compounds with a substitution at the C6 position of the pyrimidine ring exhibited high binding affinities (in a low nanomolar range) against TgDHFR-TS and in vitro T. gondii inhibitory activity. Three-dimensional structures of TgDHFR-TS reported here include the ternary complexes with Pyr, P39, or P40. A comparison of these structures showed the minor steric strain between the p-chlorophenyl group of Pyr and Thr83 of TgDHFR-TS. Such a conflict was relieved in the complexes with the two analogues, P39 and P40, explaining their highest binding affinities described herein. Moreover, these structures suggested that the hydrophobic environment in the active-site pocket could be used for drug design to increase the potency and selectivity of antifolate inhibitors. These findings would accelerate the development of new antifolate drugs to treat toxoplasmosis.


Assuntos
Antagonistas do Ácido Fólico , Toxoplasma , Toxoplasmose , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase , Toxoplasmose/tratamento farmacológico
16.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684452

RESUMO

In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds' binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.


Assuntos
Antimaláricos , Difosfotransferases , Plasmodium falciparum , Antimaláricos/química , Difosfotransferases/antagonistas & inibidores , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos
17.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566194

RESUMO

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Assuntos
Alcaloides , Antimaláricos , COVID-19 , Piper nigrum , Alcaloides/química , Alcaloides/farmacologia , Animais , Antimaláricos/farmacologia , Benzodioxóis , Humanos , Mamíferos , Simulação de Acoplamento Molecular , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia
18.
Antimicrob Agents Chemother ; 66(2): e0153821, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930029

RESUMO

Antifolates targeting dihydrofolate reductase (DHFR) are antimalarial compounds that have long been used for malaria treatment and chemoprevention (inhibition of infection from mosquitoes to humans). Despite their extensive applications, a thorough understanding of antifolate activity against hepatic malaria parasites, especially resistant parasites, has yet to be achieved. Using a transgenic Plasmodium berghei harboring quadruple mutant dhfr from Plasmodium falciparum (Pb::Pfdhfr-4M), we demonstrated that quadruple mutations on Pfdhfr confer complete chemoprevention resistance to pyrimethamine, the previous generation of antifolate, but not to a new class of antifolate designed to overcome the resistance, such as P218. Detailed investigation to pinpoint stage-specific chemoprevention further demonstrated that it is unnecessary for the drug to be present throughout hepatic development. The drug is most potent against the developmental stages from early hepatic trophozoite to late hepatic trophozoite, but it is not effective at inhibiting sporozoite and early hepatic stage development from sporozoite to early trophozoite. Our data show that P218 also inhibited the late hepatic-stage development, from trophozoite to mature schizonts to a lesser extent. With a single dose of 15 mg/kg of body weight, P218 prevented infection from up to 25,000 pyrimethamine-resistant sporozoites, a number equal to thousands of infectious mosquito bites. Additionally, the hepatic stage of malaria parasite is much more susceptible to antifolates than the asexual blood stage. This study provides important insights into the activity of antifolates as a chemopreventive therapeutic which could lead to a more efficient and cost-effective treatment regime.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética
19.
Eur J Med Chem ; 226: 113861, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624822

RESUMO

Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma brucei (T. b.), and affects communities in sub-Saharan Africa. Previously, analogues of a tetrahydroisoquinoline scaffold were reported as having in vitro activity (IC50 = 0.25-70.5 µM) against T. b. rhodesiense. In this study the synthesis and antitrypanosomal activity of 80 compounds based around a core tetrahydroisoquinoline scaffold are reported. A detailed structure activity relationship was revealed, and five derivatives (two of which have been previously reported) with inhibition of T. b. rhodesiense growth in the sub-micromolar range were identified. Four of these (3c, 12b, 17b and 26a) were also found to have good selectivity over mammalian cells (SI > 50). Calculated logD values and preliminary ADME studies predict that these compounds are likely to have good absorption and metabolic stability, with the ability to passively permeate the blood brain barrier. This makes them excellent leads for a blood-brain barrier permeable antitrypanosomal scaffold.


Assuntos
Tetra-Hidroisoquinolinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
20.
PeerJ ; 9: e11983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527439

RESUMO

BACKGROUND: The genome of the human malaria parasite Plasmodium falciparum is poorly annotated, in particular, the 5' capped ends of its mRNA transcripts. New approaches are needed to fully catalog P. falciparum transcripts for understanding gene function and regulation in this organism. METHODS: We developed a transcriptomic method based on next-generation sequencing of complementary DNA (cDNA) enriched for full-length fragments using eIF4E, a 5' cap-binding protein, and an unenriched control. DNA sequencing adapter was added after enrichment of full-length cDNA using two different ligation protocols. From the mapped sequence reads, enrichment scores were calculated for all transcribed nucleotides and used to calculate P-values of 5' capped nucleotide enrichment. Sensitivity and accuracy were increased by combining P-values from replicate experiments. Data were obtained for P. falciparum ring, trophozoite and schizont stages of intra-erythrocytic development. RESULTS: 5' capped nucleotide signals were mapped to 17,961 non-overlapping P. falciparum genomic intervals. Analysis of the dominant 5' capped nucleotide in these genomic intervals revealed the presence of two groups with distinctive epigenetic features and sequence patterns. A total of 4,512 transcripts were annotated as 5' capped based on the correspondence of 5' end with 5' capped nucleotide annotated from full-length cDNA data. DISCUSSION: The presence of two groups of 5' capped nucleotides suggests that alternative mechanisms may exist for producing 5' capped transcript ends in P. falciparum. The 5' capped transcripts that are antisense, outside of, or partially overlapping coding regions may be important regulators of gene function in P. falciparum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA