Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106052

RESUMO

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.

2.
Nat Commun ; 13(1): 5491, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123354

RESUMO

Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.


Assuntos
Mesoderma , Proteínas Ribossômicas/metabolismo , Células-Tronco , Animais , Diferenciação Celular/genética , Humanos , Mesoderma/metabolismo , Camundongos , Ribossomos , Células-Tronco/metabolismo , Via de Sinalização Wnt
3.
Mol Cell ; 82(13): 2370-2384.e10, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512709

RESUMO

The p53 transcription factor drives anti-proliferative gene expression programs in response to diverse stressors, including DNA damage and oncogenic signaling. Here, we seek to uncover new mechanisms through which p53 regulates gene expression using tandem affinity purification/mass spectrometry to identify p53-interacting proteins. This approach identified METTL3, an m6A RNA-methyltransferase complex (MTC) constituent, as a p53 interactor. We find that METTL3 promotes p53 protein stabilization and target gene expression in response to DNA damage and oncogenic signals, by both catalytic activity-dependent and independent mechanisms. METTL3 also enhances p53 tumor suppressor activity in in vivo mouse cancer models and human cancer cells. Notably, METTL3 only promotes tumor suppression in the context of intact p53. Analysis of human cancer genome data further supports the notion that the MTC reinforces p53 function in human cancer. Together, these studies reveal a fundamental role for METTL3 in amplifying p53 signaling in response to cellular stress.


Assuntos
Metiltransferases , Proteína Supressora de Tumor p53 , Animais , Carcinogênese , Metiltransferases/metabolismo , Camundongos , RNA , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Nat Commun ; 13(1): 1536, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318324

RESUMO

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.


Assuntos
COVID-19 , RNA , COVID-19/terapia , Humanos , Pseudouridina/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo
5.
Dev Cell ; 56(21): 2928-2937.e9, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34752747

RESUMO

Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ribossomos/metabolismo , Animais , Linhagem Celular , Fator de Iniciação 3 em Eucariotos/genética , Humanos , Camundongos , RNA Mensageiro/genética , Transdução de Sinais/fisiologia
6.
Cell ; 184(15): 4073-4089.e17, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34214469

RESUMO

Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.


Assuntos
Especificidade de Órgãos , Mapeamento de Interação de Proteínas , Animais , Marcação por Isótopo , Masculino , Mamíferos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
7.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34242585

RESUMO

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Extremidades/embriologia , Haploinsuficiência , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Padronização Corporal , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fenótipo , Ribossomos/metabolismo
8.
bioRxiv ; 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33821271

RESUMO

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop a new RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that "superfolder" mRNAs can be designed to improve both stability and expression that are further enhanced through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.

9.
Genome Biol ; 21(1): 140, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539747

RESUMO

BACKGROUND: The type I interferon (IFN) response is an ancient pathway that protects cells against viral pathogens by inducing the transcription of hundreds of IFN-stimulated genes. Comprehensive catalogs of IFN-stimulated genes have been established across species and cell types by transcriptomic and biochemical approaches, but their antiviral mechanisms remain incompletely characterized. Here, we apply a combination of quantitative proteomic approaches to describe the effects of IFN signaling on the human proteome, and apply protein correlation profiling to map IFN-induced rearrangements in the human protein-protein interaction network. RESULTS: We identify > 26,000 protein interactions in IFN-stimulated and unstimulated cells, many of which involve proteins associated with human disease and are observed exclusively within the IFN-stimulated network. Differential network analysis reveals interaction rewiring across a surprisingly broad spectrum of cellular pathways in the antiviral response. We identify IFN-dependent protein-protein interactions mediating novel regulatory mechanisms at the transcriptional and translational levels, with one such interaction modulating the transcriptional activity of STAT1. Moreover, we reveal IFN-dependent changes in ribosomal composition that act to buffer IFN-stimulated gene protein synthesis. CONCLUSIONS: Our map of the IFN interactome provides a global view of the complex cellular networks activated during the antiviral response, placing IFN-stimulated genes in a functional context, and serves as a framework to understand how these networks are dysregulated in autoimmune or inflammatory disease.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Interferon Tipo I/metabolismo , Mapas de Interação de Proteínas , Proteoma , Viroses/metabolismo , Humanos , Proteômica , Proteínas Ribossômicas/metabolismo , Transdução de Sinais
10.
Elife ; 82019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31364989

RESUMO

Protein-correlation-profiling (PCP), in combination with quantitative proteomics, has emerged as a high-throughput method for the rapid identification of dynamic protein complexes in native conditions. While PCP has been successfully applied to soluble proteomes, characterization of the membrane interactome has lagged, partly due to the necessary use of detergents to maintain protein solubility. Here, we apply the peptidisc, a 'one-size fits all' membrane mimetic, for the capture of the Escherichia coli cell envelope proteome and its high-resolution fractionation in the absence of detergent. Analysis of the SILAC-labeled peptidisc library via PCP allows generation of over 4900 possible binary interactions out of >700,000 random associations. Using well-characterized membrane protein systems such as the SecY translocon, the Bam complex and the MetNI transporter, we demonstrate that our dataset is a useful resource for identifying transient and surprisingly novel protein interactions. For example, we discover a trans-periplasmic supercomplex comprising subunits of the Bam and Sec machineries, including membrane-bound chaperones YfgM and PpiD. We identify RcsF and OmpA as bone fide interactors of BamA, and we show that MetQ association with the ABC transporter MetNI depends on its N-terminal lipid anchor. We also discover NlpA as a novel interactor of MetNI complex. Most of these interactions are largely undetected by standard detergent-based purification. Together, the peptidisc workflow applied to the proteomic field is emerging as a promising novel approach to characterize membrane protein interactions under native expression conditions and without genetic manipulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Ligação Proteica , Proteômica/métodos
11.
Sci Rep ; 8(1): 17353, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478341

RESUMO

Viruses are classically characterized as being either enveloped or nonenveloped depending on the presence or absence of a lipid bi-layer surrounding their proteinaceous capsid. In recent years, many studies have challenged this view by demonstrating that some nonenveloped viruses (e.g. hepatitis A virus) can acquire an envelope during infection by hijacking host cellular pathways. In this study, we examined the role of exosome-like vesicles (ELVs) during infection of Drosophilia melanogaster S2 cells by Cricket paralysis virus (CrPV). Utilizing quantitative proteomics, we demonstrated that ELVs can be isolated from both mock- and CrPV-infected S2 cells that contain distinct set of proteins compared to the cellular proteome. Moreover, 40 proteins increased in abundance in ELVs derived from CrPV-infected cells compared to mock, suggesting specific factors associate with ELVs during infection. Interestingly, peptides from CrPV capsid proteins (ORF2) and viral RNA were detected in ELVs from infected cells. Finally, ELVs from CrPV-infected cells are infectious suggesting that CrPV may hijack ELVs to acquire an envelope during infection of S2 cells. This study further demonstrates the diverse strategies of nonenveloped viruses from invertebrates to vertebrates to acquire an envelope in order to evade the host response or facilitate transmission.


Assuntos
Dicistroviridae/patogenicidade , Drosophila melanogaster/virologia , Vesículas Extracelulares/virologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Virais/metabolismo , Animais , Dicistroviridae/genética , Dicistroviridae/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Exossomos/virologia , RNA Viral/metabolismo , Proteínas Virais/análise
12.
Nucleic Acids Res ; 46(22): 11952-11967, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30418631

RESUMO

RNA structures can interact with the ribosome to alter translational reading frame maintenance and promote recoding that result in alternative protein products. Here, we show that the internal ribosome entry site (IRES) from the dicistrovirus Cricket paralysis virus drives translation of the 0-frame viral polyprotein and an overlapping +1 open reading frame, called ORFx, via a novel mechanism whereby a subset of ribosomes recruited to the IRES bypasses 37 nucleotides downstream to resume translation at the +1-frame 13th non-AUG codon. A mutant of CrPV containing a stop codon in the +1 frame ORFx sequence, yet synonymous in the 0-frame, is attenuated compared to wild-type virus in a Drosophila infection model, indicating the importance of +1 ORFx expression in promoting viral pathogenesis. This work demonstrates a novel programmed IRES-mediated recoding strategy to increase viral coding capacity and impact virus infection, highlighting the diversity of RNA-driven translation initiation mechanisms in eukaryotes.


Assuntos
Dicistroviridae/genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , Proteínas Virais/genética , Animais , Pareamento de Bases , Sequência de Bases , Linhagem Celular , Dicistroviridae/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virologia , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Poliproteínas/genética , Poliproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo
13.
Cell Host Microbe ; 24(4): 542-557.e9, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308158

RESUMO

The dicistrovirus, Cricket paralysis virus (CrPV) encodes an RNA interference (RNAi) suppressor, 1A, which modulates viral virulence. Using the Drosophila model, we combined structural, biochemical, and virological approaches to elucidate the strategies by which CrPV-1A restricts RNAi immunity. The atomic resolution structure of CrPV-1A uncovered a flexible loop that interacts with Argonaute 2 (Ago-2), thereby inhibiting Ago-2 endonuclease-dependent immunity. Mutations disrupting Ago-2 binding attenuates viral pathogenesis in wild-type but not Ago-2-deficient flies. CrPV-1A also contains a BC-box motif that enables the virus to hijack a host Cul2-Rbx1-EloBC ubiquitin ligase complex, which promotes Ago-2 degradation and virus replication. Our study uncovers a viral-based dual regulatory program that restricts antiviral immunity by direct interaction with and modulation of host proteins. While the direct inhibition of Ago-2 activity provides an efficient mechanism to establish infection, the recruitment of a ubiquitin ligase complex enables CrPV-1A to amplify Ago-2 inactivation to restrict further antiviral RNAi immunity.


Assuntos
Proteínas Argonautas/metabolismo , Dicistroviridae/patogenicidade , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Interferência de RNA/imunologia , Proteínas Virais/metabolismo , Animais , Proteínas Argonautas/química , Linhagem Celular , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/química , Replicação Viral/imunologia
14.
Mol Microbiol ; 107(5): 623-638, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280215

RESUMO

Osmosensing by transporter ProP is modulated by its cardiolipin (CL)-dependent concentration at the poles of Escherichia coli cells. Other contributors to this phenomenon were sought with the BACterial Two-Hybrid System (BACTH). The BACTH-tagged variants T18-ProP and T25-ProP retained ProP function and localization. Their interaction confirmed the ProP homo-dimerization previously established by protein crosslinking. YdhP, YjbJ and ClsA were prominent among the putative ProP interactors identified by the BACTH system. The functions of YdhP and YjbJ are unknown, although YjbJ is an abundant, osmotically induced, soluble protein. ClsA (CL Synthase A) had been shown to determine ProP localization by mediating CL synthesis. Unlike a deletion of clsA, deletion of ydhP or yjbJ had no effect on ProP localization or function. All three proteins were concentrated at the cell poles, but only ClsA localization was CL-dependent. ClsA was shown to be N-terminally processed and membrane-anchored, with dual, cytoplasmic, catalytic domains. Active site amino acid replacements (H224A plus H404A) inactivated ClsA and compromised ProP localization. YdhP and YjbJ may be ClsA effectors, and interactions of YdhP, YjbJ and ClsA with ProP may reflect their colocalization at the cell poles. Targeted CL synthesis may contribute to the polar localization of CL, ClsA and ProP.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Osmorregulação , Simportadores/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Concentração Osmolar , Conformação Proteica , Multimerização Proteica , Simportadores/química , Simportadores/genética , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
16.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003491

RESUMO

Stress granules (SGs) are cytosolic ribonucleoprotein aggregates that are induced during cellular stress. Several viruses modulate SG formation, suggesting that SGs have an impact on virus infection. However, the mechanisms and impact of modulating SG assembly in infected cells are not completely understood. In this study, we identify the dicistrovirus cricket paralysis virus 1A (CrPV-1A) protein that functions to inhibit SG assembly during infection. Moreover, besides inhibiting RNA interference, CrPV-1A also inhibits host transcription, which indirectly modulates SG assembly. Thus, CrPV-1A is a multifunctional protein. We identify a key R146A residue that is responsible for these effects, and mutant CrPV(R146A) virus infection is attenuated in Drosophila melanogaster S2 cells and adult fruit flies and results in increased SG formation. Treatment of CrPV(R146A)-infected cells with actinomycin D, which represses transcription, restores SG assembly suppression and viral yield. In summary, CrPV-1A modulates several cellular processes to generate a cellular environment that promotes viral translation and replication.IMPORTANCE RNA viruses encode a limited set of viral proteins to modulate an array of cellular processes in order to facilitate viral replication and inhibit antiviral defenses. In this study, we identified a viral protein, called CrPV-1A, within the dicistrovirus cricket paralysis virus that can inhibit host transcription, modulate viral translation, and block a cellular process called stress granule assembly. We also identified a specific amino acid within CrPV-1A that is important for these cellular processes and that mutant viruses containing mutations of CrPV-1A attenuate virus infection. We also demonstrate that the CrPV-1A protein can also modulate cellular processes in human cells, suggesting that the mode of action of CrPV-1A is conserved. We propose that CrPV-1A is a multifunctional, versatile protein that creates a cellular environment in virus-infected cells that permits productive virus infection.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Vírus de Insetos/fisiologia , Proteínas Virais/fisiologia , Animais , Drosophila melanogaster , Feminino , Inativação Gênica , Células HeLa , Humanos , Masculino , Transcrição Gênica , Replicação Viral
17.
Sci Rep ; 6: 37319, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853311

RESUMO

The dicistrovirus Cricket Paralysis virus contains a unique dicistronic RNA genome arrangement, encoding two main open reading frames that are driven by distinct internal ribosome entry sites (IRES). The intergenic region (IGR) IRES adopts an unusual structure that directly recruits the ribosome and drives translation of viral structural proteins in a factor-independent manner. While structural, biochemical, and biophysical approaches have provided mechanistic details into IGR IRES translation, these studies have been limited to in vitro systems and little is known about the behavior of these IRESs during infection. Here, we examined the role of previously characterized IGR IRES mutations on viral yield and translation in CrPV-infected Drosophila S2 cells. Using a recently generated infectious CrPV clone, introduction of a subset of mutations that are known to disrupt IRES activity failed to produce virus, demonstrating the physiological relevance of specific structural elements within the IRES for virus infection. However, a subset of mutations still led to virus production, thus revealing the key IRES-ribosome interactions for IGR IRES translation in infected cells, which highlights the importance of examining IRES activity in its physiological context. This is the first study to examine IGR IRES translation in its native context during virus infection.


Assuntos
Dicistroviridae/genética , RNA Viral/genética , Animais , Sequência de Bases , Linhagem Celular , Drosophila melanogaster , Genoma Viral , Sítios Internos de Entrada Ribossomal , Mutação , Biossíntese de Proteínas , Proteínas Estruturais Virais/biossíntese , Proteínas Estruturais Virais/genética , Replicação Viral
18.
J Virol ; 90(12): 5538-5540, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053555

RESUMO

To replicate, all viruses depend entirely on the enslavement of host cell ribosomes for their own advantage. To this end, viruses have evolved a multitude of translational strategies to usurp the ribosome. RNA-based structures known as internal ribosome entry sites (IRESs) are among the most notable mechanisms employed by viruses to seize host ribosomes. In this article, we spotlight the intergenic region IRES from the Dicistroviridae family of viruses and its importance as a model for IRES-dependent translation and in understanding fundamental properties of translation.


Assuntos
Dicistroviridae/genética , Dicistroviridae/fisiologia , Genoma Viral , Sítios Internos de Entrada Ribossomal , Ribossomos/genética , Animais , Interações Hospedeiro-Patógeno , Modelos Moleculares , Biossíntese de Proteínas , RNA Viral/genética , Ribossomos/metabolismo , Ribossomos/virologia
19.
Viruses ; 8(1)2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797630

RESUMO

Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5'untranslated region (5'UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5'UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours post infection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection.


Assuntos
Dicistroviridae/genética , Regulação Viral da Expressão Gênica , Sítios Internos de Entrada Ribossomal , Regiões 5' não Traduzidas , Animais , Dicistroviridae/metabolismo , Drosophila/virologia , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
J Virol ; 89(11): 5919-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810541

RESUMO

UNLABELLED: Dicistroviridae are a family of RNA viruses that possesses a single-stranded positive-sense RNA genome containing two distinct open reading frames (ORFs), each preceded by an internal ribosome entry site that drives translation of the viral structural and nonstructural proteins, respectively. The type species, Cricket paralysis virus (CrPV), has served as a model for studying host-virus interactions; however, investigations into the molecular mechanisms of CrPV and other dicistroviruses have been limited as an established infectious clone was elusive. Here, we report the construction of an infectious molecular clone of CrPV. Transfection of in vitro-transcribed RNA from the CrPV clone into Drosophila Schneider line 2 (S2) cells resulted in cytopathic effects, viral RNA accumulation, detection of negative-sense viral RNA, and expression of viral proteins. Transmission electron microscopy, viral titers, and immunofluorescence-coupled transwell assays demonstrated that infectious viral particles are released from transfected cells. In contrast, mutant clones containing stop codons in either ORF decreased virus infectivity. Injection of adult Drosophila flies with virus derived from CrPV clones but not UV-inactivated clones resulted in mortality. Molecular analysis of the CrPV clone revealed a 196-nucleotide duplication within its 5' untranslated region (UTR) that stimulated translation of reporter constructs. In cells infected with the CrPV clone, the duplication inhibited viral infectivity yet did not affect viral translation or RNA accumulation, suggesting an effect on viral packaging or entry. The generation of the CrPV infectious clone provides a powerful tool for investigating the viral life cycle and pathogenesis of dicistroviruses and may further understanding of fundamental host-virus interactions in insect cells. IMPORTANCE: Dicistroviridae, which are RNA viruses that infect arthropods, have served as a model to gain insights into fundamental host-virus interactions in insect cells. Further insights into the viral molecular mechanisms are hampered due to a lack of an established infectious clone. We report the construction of the first infectious clone of the dicistrovirus, cricket paralysis virus (CrPV). We show that transfection of the CrPV clone RNA into Drosophila cells led to production of infectious particles that resemble natural CrPV virions and result in cytopathic effects and expression of CrPV proteins and RNA in infected cells. The CrPV clone should provide insights into the dicistrovirus life cycle and host-virus interactions in insect cells. Using this clone, we find that a 196-nucleotide duplication within the 5' untranslated region of the CrPV clone increased viral translation in reporter constructs but decreased virus infectivity, thus revealing a balance that interplays between viral translation and replication.


Assuntos
Regiões 5' não Traduzidas , Dicistroviridae/genética , RNA Viral/genética , Animais , Linhagem Celular , Clonagem Molecular , Efeito Citopatogênico Viral , Dicistroviridae/fisiologia , Drosophila , Microscopia Eletrônica de Transmissão , Biossíntese de Proteínas , RNA Viral/fisiologia , Análise de Sobrevida , Transcrição Gênica , Transfecção , Carga Viral , Vírion/ultraestrutura , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA