Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Alzheimers Dis ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38995778

RESUMO

Background: Personalized dance-based movement therapies may improve cognitive and motor function in individuals with mild cognitive impairment (MCI), a precursor to Alzheimer's disease. While age- and MCI-related deficits reduce individuals' abilities to perform dance-like rhythmic movement sequences (RMS)-spatial and temporal modifications to movement-it remains unclear how individuals' relationships to dance and music affect their ability to perform RMS. Objective: Characterize associations between RMS performance and music or dance relationships, as well as the ability to perceive rhythm and meter (rhythmic proficiency) in adults with and without MCI. Methods: We used wearable inertial sensors to evaluate the ability of 12 young adults (YA; age = 23.9±4.2 years; 9F), 26 older adults without MCI (OA; age = 68.1±8.5 years; 16F), and 18 adults with MCI (MCI; age = 70.8±6.2 years; 10F) to accurately perform spatial, temporal, and spatiotemporal RMS. To quantify self-reported music and dance relationships and rhythmic proficiency, we developed Music (MRQ) and Dance Relationship Questionnaires (DRQ), and a rhythm assessment (RA), respectively. We correlated MRQ, DRQ, and RA scores against RMS performance for each group separately. Results: The OA and YA groups exhibited better MRQ and RA scores than the MCI group (p < 0.006). Better MRQ and RA scores were associated with better temporal RMS performance for only the YA and OA groups (r2 = 0.18-0.41; p < 0.045). DRQ scores were not associated with RMS performance in any group. Conclusions: Cognitive deficits in adults with MCI likely limit the extent to which music relationships or rhythmic proficiency improve the ability to perform temporal aspects of movements performed during dance-based therapies.

2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746237

RESUMO

Understanding individuals' distinct movement patterns is crucial for health, rehabilitation, and sports. Recently, we developed a machine learning-based framework to show that "gait signatures" describing the neuromechanical dynamics governing able-bodied and post-stroke gait kinematics remain individual-specific across speeds. However, we only evaluated gait signatures within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint angles. Here we characterized changes in gait signatures across a wide range of speeds, from very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces, joint moments, and powers) data would improve the discrimination of gait signatures. Our study showed that gait signatures remained individual-specific across walking speeds: Notably, 3D kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (CI): 99.1-100%) in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants exhibited consistent, predictable linear changes in their gait signatures across the entire speed range. These changes were associated with participants' preferred walking speeds, balance ability, cadence, and step length. These findings support gait signatures as a tool to characterize individual differences in gait and predict speed-induced changes in gait dynamics.

3.
medRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798436

RESUMO

Background: No effective therapies exist to prevent degeneration from Mild Cognitive Impairment (MCI) to Alzheimer's disease. Therapies integrating music and/or dance are promising as effective, non-pharmacological options to mitigate cognitive decline. Objective: To deepen our understanding of individuals' relationships (i.e., histories, experiences and attitudes) with music and dance that are not often incorporated into music- and dance-based therapeutic design, yet may affect therapeutic outcomes. Methods: Eleven older adults with MCI and five of their care partners/ spouses participated (4M/12F; Black: n=4, White: n=10, Hispanic/ Latino: n=2; Age: 71.4±9.6). We conducted focus groups and administered questionnaires that captured aspects of participants' music and dance relationships. We extracted emergent themes from four major topics, including: (1) experience and history, (2) enjoyment and preferences, (3) confidence and barriers, and (4) impressions of music and dance as therapeutic tools. Results: Thematic analysis revealed participants' positive impressions of music and dance as potential therapeutic tools, citing perceived neuropsychological, emotional, and physical benefits. Participants viewed music and dance as integral to their lives, histories, and identities within a culture, family, and/ or community. Participants also identified lifelong engagement barriers that, in conjunction with negative feedback, instilled persistent low self-efficacy regarding dancing and active music engagement. Questionnaires verified individuals' moderately-strong music and dance relationships, strongest in passive forms of music engagement (e.g., listening). Conclusions: Our findings support that individuals' music and dance relationships and the associated perceptions toward music and dance therapy may be valuable considerations in enhancing therapy efficacy, participant engagement and satisfaction for individuals with MCI.

4.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38187592

RESUMO

Background: Personalized dance-based movement therapies may improve cognitive and motor function in individuals with mild cognitive impairment (MCI), a precursor to Alzheimer's disease. While age- and MCI-related deficits reduce individuals' abilities to perform dance-like rhythmic movement sequences (RMS)-spatial and temporal modifications to movement-it remains unclear how individuals' relationships to dance and music affect their ability to perform RMS. Objective: Characterize associations between RMS performance and music or dance relationships, as well as the ability to perceive rhythm and meter (rhythmic proficiency) in adults with and without MCI. Methods: We used wearable inertial sensors to evaluate the ability of 12 young adults (YA; age=23.9±4.2 yrs; 9F), 26 older adults without MCI (OA; age=68.1±8.5 yrs; 16F), and 18 adults with MCI (MCI; age=70.8±6.2 yrs; 10F) to accurately perform spatial, temporal, and spatiotemporal RMS. To quantify self-reported music and dance relationships and rhythmic proficiency, we developed Music (MRQ) and Dance Relationship Questionnaires (DRQ), and a rhythm assessment (RA), respectively. We correlated MRQ, DRQ, and RA scores against RMS performance for each group separately. Results: The OA and YA groups exhibited better MRQ and RA scores than the MCI group (p<0.006). Better MRQ and RA scores were associated with better temporal RMS performance for only the YA and OA groups (r2=0.18-0.41; p<0.045). DRQ scores were not associated with RMS performance in any group. Conclusions: Cognitive deficits in adults with MCI likely limit the extent to which music relationships or rhythmic proficiency improve the ability to perform temporal aspects of movements performed during dance-based therapies.

5.
Top Stroke Rehabil ; 31(1): 29-43, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061928

RESUMO

BACKGROUND AND PURPOSE: Somatosensory impairments are common after stroke, but receive limited evaluation and intervention during neurorehabilitation, despite negatively impacting functional movement and recovery. OBJECTIVES: Our objective was to understand the scope of somatosensory assessments used by clinicians in stroke rehabilitation, and barriers to increasing use in clinical practice. METHODS: An electronic survey was distributed to clinicians (physical therapists, occupational therapists, physicians, and nurses) who assessed at least one individual with stroke in the past 6 months. The survey included questions on evaluation procedures, type, and use of somatosensory assessments, as well as barriers and facilitators in clinical practice. RESULTS: Clinicians (N = 431) indicated greater familiarity with non-standardized assessments, and greater utilization compared to standardized assessments (p < 0.0001). Components of tactile sensation were the most commonly assessed modality of somatosensation (25%), while proprioception was rarely assessed (1%). Overall, assessments of motor function were prioritized over assessments of somatosensory function (p < 0.0001). DISCUSSION: Respondents reported assessing somatosensation less frequently than motor function and demonstrated a reliance on rapid and coarse non-standardized assessments that ineffectively capture multi-modal somatosensory impairments, particularly for proprioceptive deficits common post-stroke. In general, clinicians were not familiar with standardized somatosensory assessments, and this knowledge gap likely contributes to lack of translation of these assessments into practice. CONCLUSIONS: Clinicians utilize somatosensory assessments that inadequately capture the multi-modal nature of somatosensory impairments in stroke survivors. Addressing barriers to clinical translation has the potential to increase utilization of standardized assessments to improve the characterization of somatosensory deficits that inform clinical decision-making toward enhancing stroke rehabilitation outcomes.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Estudos Transversais , Distúrbios Somatossensoriais/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Terapeutas Ocupacionais
6.
Ann Biomed Eng ; 52(2): 355-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870663

RESUMO

Treadmill-based gait rehabilitation protocols have shown that real-time visual biofeedback can promote learning of improved gait biomechanics, but previous feedback work has largely involved treadmill walking and not overground gait. The objective of this study was to determine the short-term response to hip extension visual biofeedback, with individuals post-stroke, during unconstrained overground walking. Individuals post-stroke typically have a decreased paretic propulsion and walking speed, but increasing hip extension angle may enable the paretic leg to better translate force anteriorly during push-off. Fourteen individuals post-stroke completed overground walking, one 6-min control bout without feedback, and three 6-min training bouts with real-time feedback. Data were recorded before and after the control bout, before and after the first training bout, and after the third training bout to assess the effects of training. Visual biofeedback consisted of a display attached to eyeglasses that showed one horizontal bar indicating the user's current hip angle and another symbolizing the target hip extension to be reached during training. On average, paretic hip extension angle (p = 0.014), trailing limb angle (p = 0.025), and propulsion (p = 0.011) were significantly higher after training. Walking speed increased but was not significantly higher after training (p = 0.089). Individuals demonstrated a greater increase in their hip extension angle (p = 0.035) and propulsion (p = 0.030) after the walking bout with feedback compared to the control bout, but changes in walking speed did not significantly differ (p = 0.583) between a control walking bout and a feedback bout. Our results show the feasibility of overground visual gait feedback and suggest that feedback regarding paretic hip extension angle enabled many individuals post-stroke to improve parameters important for their walking function.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Fenômenos Biomecânicos , Retroalimentação , Reabilitação do Acidente Vascular Cerebral/métodos , Marcha/fisiologia , Caminhada/fisiologia
7.
Pilot Feasibility Stud ; 9(1): 192, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001523

RESUMO

BACKGROUND: Despite family carepartners of individuals post-stroke experiencing high levels of strain and reduced quality of life, stroke rehabilitation interventions rarely address carepartner well-being or offer training to support their engagement in therapeutic activities. Our group has developed creative intervention approaches to support families during stroke recovery, thereby improving physical and psychosocial outcomes for both carepartners and stroke survivors. The purpose of this study is to test the feasibility of an adapted, home-based intervention (Carepartner Collaborative Integrative Therapy for Gait-CARE-CITE-Gait) designed to facilitate positive carepartner involvement during home-based training targeting gait and mobility. METHODS: This two-phased design will determine the feasibility of CARE-CITE-Gait, a novel intervention that leverages principles from our previous carepartner-focused upper extremity intervention. During the 4-week CARE-CITE-Gait intervention, carepartners review online video-based modules designed to illustrate strategies for an autonomy-supportive environment during functional mobility task practice, and the study team completes two 2-h home visits for dyad collaborative goal setting. In phase I, content validity, usability, and acceptability of the CARE-CITE-Gait modules will be evaluated by stroke rehabilitation content experts and carepartners. In phase II, feasibility (based on measures of recruitment, retention, intervention adherence, and safety) will be measured. Preliminary effects of the CARE-CITE-Gait will be gathered using a single-group, quasi-experimental design with repeated measures (two baseline visits 1 week apart, posttest, and 1-month follow-up) with 15 carepartner and stroke survivor dyads. Outcome data collectors will be blinded. Outcomes include psychosocial variables (family conflict surrounding stroke recovery, strain, autonomy support, and quality of life) collected from carepartners and measures of functional mobility, gait speed, stepping activity, and health-related quality of life collected from stroke survivors. DISCUSSION: The findings of the feasibility testing and preliminary data on the effects of CARE-CITE-Gait will provide justification and information to guide a future definitive randomized clinical trial. The knowledge gained from this study will enhance our understanding of and aid the development of rehabilitation approaches that address both carepartner and stroke survivor needs during the stroke recovery process. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05257928. Registered 25 February 2022. TRIAL STATUS: This trial was registered on ClinicalTrials.gov (NCT05257928) on March 25, 2022. Recruitment of participants was initiated on May 18, 2022.

8.
Neurorehabil Neural Repair ; 37(11-12): 810-822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975184

RESUMO

BACKGROUND: Walking patterns in stroke survivors are highly heterogeneous, which poses a challenge in systematizing treatment prescriptions for walking rehabilitation interventions. OBJECTIVES: We used bilateral spatiotemporal and force data during walking to create a multi-site research sample to: (1) identify clusters of walking behaviors in people post-stroke and neurotypical controls and (2) determine the generalizability of these walking clusters across different research sites. We hypothesized that participants post-stroke will have different walking impairments resulting in different clusters of walking behaviors, which are also different from control participants. METHODS: We gathered data from 81 post-stroke participants across 4 research sites and collected data from 31 control participants. Using sparse K-means clustering, we identified walking clusters based on 17 spatiotemporal and force variables. We analyzed the biomechanical features within each cluster to characterize cluster-specific walking behaviors. We also assessed the generalizability of the clusters using a leave-one-out approach. RESULTS: We identified 4 stroke clusters: a fast and asymmetric cluster, a moderate speed and asymmetric cluster, a slow cluster with frontal plane force asymmetries, and a slow and symmetric cluster. We also identified a moderate speed and symmetric gait cluster composed of controls and participants post-stroke. The moderate speed and asymmetric stroke cluster did not generalize across sites. CONCLUSIONS: Although post-stroke walking patterns are heterogenous, these patterns can be systematically classified into distinct clusters based on spatiotemporal and force data. Future interventions could target the key features that characterize each cluster to increase the efficacy of interventions to improve mobility in people post-stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Fenômenos Biomecânicos , Marcha , Caminhada , Velocidade de Caminhada
9.
Ann N Y Acad Sci ; 1530(1): 74-86, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37917153

RESUMO

This work reviews the growing body of interdisciplinary research on music cognition, using biomechanical, kinesiological, clinical, psychosocial, and sociological methods. The review primarily examines the relationship between temporal elements in music and motor responses under varying contexts, with considerable relevance for clinical rehabilitation. After providing an overview of the terminology and approaches pertinent to theories of rhythm and meter from the musical-theoretical and cognitive fields, this review focuses on studies on the effects of rhythmic sensory stimulation on gait, rhythmic cues' effect on the motor system, reactions to rhythmic stimuli attempting to synchronize mobility (i.e., musical embodiment), and the application of rhythm for motor rehabilitation for individuals with Parkinson's disease, stroke, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative or neurotraumatic diseases. This work ultimately bridges the gap between the musical-theoretical and cognitive science fields to facilitate innovative research in which each discipline informs the other.


Assuntos
Música , Reabilitação Neurológica , Doença de Parkinson , Humanos , Música/psicologia , Estimulação Acústica/métodos , Doença de Parkinson/reabilitação , Cognição , Percepção Auditiva/fisiologia
10.
PLoS Comput Biol ; 19(10): e1011556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889927

RESUMO

Locomotion results from the interactions of highly nonlinear neural and biomechanical dynamics. Accordingly, understanding gait dynamics across behavioral conditions and individuals based on detailed modeling of the underlying neuromechanical system has proven difficult. Here, we develop a data-driven and generative modeling approach that recapitulates the dynamical features of gait behaviors to enable more holistic and interpretable characterizations and comparisons of gait dynamics. Specifically, gait dynamics of multiple individuals are predicted by a dynamical model that defines a common, low-dimensional, latent space to compare group and individual differences. We find that highly individualized dynamics-i.e., gait signatures-for healthy older adults and stroke survivors during treadmill walking are conserved across gait speed. Gait signatures further reveal individual differences in gait dynamics, even in individuals with similar functional deficits. Moreover, components of gait signatures can be biomechanically interpreted and manipulated to reveal their relationships to observed spatiotemporal joint coordination patterns. Lastly, the gait dynamics model can predict the time evolution of joint coordination based on an initial static posture. Our gait signatures framework thus provides a generalizable, holistic method for characterizing and predicting cyclic, dynamical motor behavior that may generalize across species, pathologies, and gait perturbations.


Assuntos
Marcha , Caminhada , Humanos , Idoso , Fenômenos Biomecânicos , Locomoção , Velocidade de Caminhada
11.
Dela J Public Health ; 9(3): 76-81, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37701480

RESUMO

Stroke continues to be a leading cause of adult disability, contributing to immense healthcare costs. Even after discharge from rehabilitation, post-stroke individuals continue to have persistent gait impairments, which in turn adversely affect functional mobility and quality of life. Multiple factors, including biomechanics, energy cost, psychosocial variables, as well as the physiological function of corticospinal neural pathways influence stroke gait function and training-induced gait improvements. As a step toward addressing this challenge, the objective of the current perspective paper is to outline knowledge gaps pertinent to the measurement and retraining of stroke gait dysfunction. The paper also has recommendations for future research directions to address important knowledge gaps, especially related to the measurement and rehabilitation-induced modulation of biomechanical and neural processes underlying stroke gait dysfunction. We posit that there is a need for leveraging emerging technologies to develop innovative, comprehensive, methods to measure gait patterns quantitatively, to provide clinicians with objective measure of gait quality that can supplement conventional clinical outcomes of walking function. Additionally, we posit that there is a need for more research on how the stroke lesion affects multiple parts of the nervous system, and to understand the neuroplasticity correlates of gait training and gait recovery. Multi-modal clinical research studies that can combine clinical, biomechanical, neural, and computational modeling data provide promise for gaining new information about stroke gait dysfunction as well as the multitude of factors affecting recovery and treatment response in people with post-stroke hemiparesis.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37478040

RESUMO

Abnormal muscle synergies during sit-to-stand (STS) transitions have been observed post-stroke, which are associated with deteriorated lower-limb function and mobility. Although exoskeletons have been used in restoring lower-limb function, their effects on muscle synergies and lower-limb motor recovery remain unclear. Here, we characterized normal muscle synergy patterns during STS activity in ten healthy adults as a reference, comparing with pathological muscle synergy patterns in ten participants with subacute stroke. Moreover, we assessed the effects of a 3-week exoskeleton-assisted STS training intervention on muscle synergies and clinical scores in seven stroke survivors. We also investigated correlations between neuromuscular complexity of muscle synergies and clinical scores. Our results showed that the STS task involved three motor modules representing distinct biomechanical functions among healthy subjects. In contrast, stroke participants showed 3 abnormal modules for the paretic leg and 2 modules for the non-paretic leg. After the intervention, muscle synergies partially shifted towards the normal pattern observed in healthy subjects on the paretic side. On the non-paretic side, the synergy modules increased to three and neuromuscular coordination improved. Furthermore, the significant intervention-induced increases in Fugl-Meyer Assessment of Lower Extremity and Berg Balance Scale scores were associated with improved muscle synergies on the non-paretic side. These results indicate that the paretic side demonstrates abnormal changes in muscle synergies post-stroke, while the non-paretic side can synergistically adapt to post-stroke biomechanical deviations. Our data show that exoskeleton-based training improved lower-limb function post-stroke by inducing modifications in muscle synergies.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Humanos , Músculo Esquelético , Extremidade Inferior , Reabilitação do Acidente Vascular Cerebral/métodos , Sobreviventes
13.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37214916

RESUMO

Background: Walking patterns in stroke survivors are highly heterogeneous, which poses a challenge in systematizing treatment prescriptions for walking rehabilitation interventions. Objective: We used bilateral spatiotemporal and force data during walking to create a multi-site research sample to: 1) identify clusters of walking behaviors in people post-stroke and neurotypical controls, and 2) determine the generalizability of these walking clusters across different research sites. We hypothesized that participants post-stroke will have different walking impairments resulting in different clusters of walking behaviors, which are also different from control participants. Methods: We gathered data from 81 post-stroke participants across four research sites and collected data from 31 control participants. Using sparse K-means clustering, we identified walking clusters based on 17 spatiotemporal and force variables. We analyzed the biomechanical features within each cluster to characterize cluster-specific walking behaviors. We also assessed the generalizability of the clusters using a leave-one-out approach. Results: We identified four stroke clusters: a fast and asymmetric cluster, a moderate speed and asymmetric cluster, a slow cluster with frontal plane force asymmetries, and a slow and symmetric cluster. We also identified a moderate speed and symmetric gait cluster composed of controls and participants post-stroke. The moderate speed and asymmetric stroke cluster did not generalize across sites. Conclusions: Although post-stroke walking patterns are heterogenous, these patterns can be systematically classified into distinct clusters based on spatiotemporal and force data. Future interventions could target the key features that characterize each cluster to increase the efficacy of interventions to improve mobility in people post-stroke.

14.
Res Sq ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090566

RESUMO

Background: Despite family carepartners of individuals post-stroke experiencing high levels of strain and reduced quality of life, stroke rehabilitation interventions rarely address carepartner well-being or offer training to support their engagement in therapeutic activities. Our group has developed creative intervention approaches to support families during stroke recovery, thereby improving physical and psychosocial outcomes for both carepartners and stroke survivors. The purpose of this preliminary clinical trial is to test the feasibility of an adapted, home-based intervention (Carepartner Collaborative Integrative Therapy for Gait-CARE-CITE-Gait) designed to facilitate positive carepartner involvement during home-based training targeting gait and mobility. Methods: This two-phased study will determine the feasibility of CARE-CITE-Gait, a novel intervention developed by our team that leverages principles from our previous carepartner-focused upper extremity intervention. During the 4-week CARE-CITE-Gait intervention, carepartners review online video-based modules designed to illustrate strategies for an autonomy-supportive environment during functional mobility task practice, and the study team completes two 2-hour (home-based) visits for dyad collaborative goal setting. In Phase I, the usability and acceptability of the CARE-CITE-Gait modules will be evaluated by stroke rehabilitation content experts and carepartners. In Phase II, feasibility (based on measures of recruitment, retention, and intervention adherence) will be measured. Preliminary effects of the CARE-CITE-Gait will be gathered using a single-group, evaluator blinded, quasi-experimental design with repeated measures (two baseline visits one week apart, post-test, and one-month follow-up) with 15 carepartner and stroke survivor dyads. Outcomes include psychosocial variables (strain, family conflict surrounding stroke recovery, autonomy support and life changes) collected from carepartners, and measures of functional mobility, gait speed, stepping activity, and health-related quality of life collected from stroke survivors. Discussion: The findings of the feasibility testing and preliminary data on the effects of CARE-CITE-Gait will provide justification and information to guide a future definitive randomized clinical trial. The knowledge gained from this study will enhance our understanding of and aid the development of rehabilitation approaches that address both carepartner and stroke survivor needs during the stroke recovery process. Trial Registration: ClinicalTrials.gov, NCT05257928. Registered 25 February 2022, https://clinicaltrials.gov/ct2/show/NCT05257928.

15.
J Neuroeng Rehabil ; 20(1): 37, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004111

RESUMO

BACKGROUND: Paretic propulsion [measured as anteriorly-directed ground reaction forces (AGRF)] and trailing limb angle (TLA) show robust inter-relationships, and represent two key modifiable post-stroke gait variables that have biomechanical and clinical relevance. Our recent work demonstrated that real-time biofeedback is a feasible paradigm for modulating AGRF and TLA in able-bodied participants. However, the effects of TLA biofeedback on gait biomechanics of post-stroke individuals are poorly understood. Thus, our objective was to investigate the effects of unilateral, real-time, audiovisual TLA versus AGRF biofeedback on gait biomechanics in post-stroke individuals. METHODS: Nine post-stroke individuals (6 males, age 63 ± 9.8 years, 44.9 months post-stroke) participated in a single session of gait analysis comprised of three types of walking trials: no biofeedback, AGRF biofeedback, and TLA biofeedback. Biofeedback unilaterally targeted deficits on the paretic limb. Dependent variables included peak AGRF, TLA, and ankle plantarflexor moment. One-way repeated measures ANOVA with Bonferroni-corrected post-hoc comparisons were conducted to detect the effect of biofeedback on gait biomechanics variables. RESULTS: Compared to no-biofeedback, both AGRF and TLA biofeedback induced unilateral increases in paretic AGRF. TLA biofeedback induced significantly larger increases in paretic TLA than AGRF biofeedback. AGRF biofeedback increased ankle moment, and both feedback conditions increased non-paretic step length. Both types of biofeedback specifically targeted the paretic limb without inducing changes in the non-paretic limb. CONCLUSIONS: By showing comparable increases in paretic limb gait biomechanics in response to both TLA and AGRF biofeedback, our novel findings provide the rationale and feasibility of paretic TLA as a gait biofeedback target for post-stroke individuals. Additionally, our results provide preliminary insights into divergent biomechanical mechanisms underlying improvements in post-stroke gait induced by these two biofeedback targets. We lay the groundwork for future investigations incorporating greater dosages and longer-term therapeutic effects of TLA biofeedback as a stroke gait rehabilitation strategy. Trial registration NCT03466372.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Caminhada/fisiologia
16.
Front Hum Neurosci ; 17: 1040930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968783

RESUMO

Introduction: Dance-based therapies are an emerging form of movement therapy aiming to improve motor and cognitive function in older adults with mild cognitive impairments (MCIs). Despite the promising effects of dance-based therapies on function, it remains unclear how age-related declines in motor and cognitive function affect movement capacity and influence which movements and rhythms maximize dance therapy efficacy. Here, we evaluated the effects of age and MCI on the ability to accurately modulate spatial (i.e., joint kinematics), temporal (i.e., step timing), and spatiotemporal features of gait to achieve spatial and temporal targets during walking. Methods: We developed novel rhythmic movement sequences-nine spatial, nine temporal, and four spatiotemporal-that deviated from typical spatial and temporal features of walking. Healthy young adults (HYA), healthy older adults (HOA), and adults with MCI were trained on each gait modification before performing the modification overground, with kinematic data recorded using wearable sensors. Results: HOA performed spatial (p = 0.010) and spatiotemporal (p = 0.048) gait modifications less accurately than HYA. Individuals with MCI performed spatiotemporal gait modifications less accurately than HOA (p = 0.017). Spatial modifications to the swing phase of gait (p = 0.006, Cohen's d = -1.3), and four- and six-step Duple rhythms during temporal modifications (p ≤ 0.030, Cohen's d ≤ 0.9) elicited the largest differences in gait performance in HYA vs. HOA and HOA vs. MCI, respectively. Discussion: These findings suggest that age-related declines in strength and balance reduce the ability to accurately modulate spatial gait features, while declines in working memory in individuals with MCI may reduce the ability to perform longer temporal gait modification sequences. Differences in rhythmic movement sequence performance highlight motor and cognitive factors potentially underlying deficits in gait modulation capacity, which may guide therapy personalization and provide more sensitive indices to track intervention efficacy.

17.
PM R ; 15(11): 1403-1410, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36787167

RESUMO

BACKGROUND: Task-specific motor training and repetitive practice are essential components of clinical rehabilitation. Emerging evidence suggests that incorporating gaming interfaces (also referred to as "exergames"), including virtual reality and augmented reality (VR/AR)-based interfaces for motor training, can enhance the engagement and efficacy of poststroke rehabilitation. OBJECTIVE: To investigate perceptions of individuals with stroke regarding technology and exergames for rehabilitation. DESIGN: This qualitative phenomenological study included a convenience sample of 11 individuals with stroke (61.7 ± 12.4 years, 6 women and 5 men, 63.5 ± 41.2 months post stroke). SETTING: Community. INTERVENTIONS: N/A. OUTCOME MEASURES: Semistructured open-ended focus-group interviews to understand their perceptions on technology and exergames to improve recovery were coded using thematic content analysis. RESULTS: Individuals with stroke were comfortable using smartphones, computers, and rehabilitation technologies but had limited experiences using exergames and VR/AR devices. Individuals with stroke were motivated to use technologies and exergames to improve their functional recovery. Participants identified facilitators (eg, enhancing functional recovery, feedback, therapist supervision) and barriers (eg, safety, inaccessibility, inadequate knowledge) to adopting exergames in their daily lives. Participants wanted the exergames to be customizable, goal oriented, and enjoyable to maintain their engagement. They were willing to use exergames to improve their functional recovery but indicated that these games could not replace the therapist's supervision. CONCLUSIONS: Despite having limited experiences with exergames, people post stroke perceived that exergames could promote functional recovery. The perspectives gained from the present study can inform user-centered game design for neurorehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Jogos Eletrônicos de Movimento , Recuperação de Função Fisiológica , Sobreviventes
18.
Ann Biomed Eng ; 51(2): 410-421, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35963920

RESUMO

Hemiparetic gait due to stroke is characterized by an asymmetric gait due to weakness in the paretic lower limb. These inter-limb asymmetries increase the biomechanical demand and reduce walking speed, leading to reduced community mobility and quality of life. With recent progress in the field of wearable technologies, powered exoskeletons have shown great promise as a potential solution for improving gait post-stroke. While previous studies have adopted different exoskeleton control methodologies for restoring gait post-stroke, the results are highly variable due to limited understanding of the biomechanical effect of exoskeletons on hemiparetic gait. In this study, we investigated the effect of different hip exoskeleton assistance strategies on gait function and gait biomechanics of individuals post-stroke. We found that, compared to walking without a device, powered assistance from hip exoskeletons improved stroke participants' self-selected overground walking speed by 17.6 ± 2.5% and 11.1 ± 2.7% with a bilateral and unilateral assistance strategy, respectively (p < 0.05). Furthermore, both bilateral and unilateral assistance strategies significantly increased the paretic and non-paretic step length (p < 0.05). Our findings suggest that powered assistance from hip exoskeletons is an effective means to increase walking speed post-stroke and tuning the balance of assistance between non-paretic and paretic limbs (i.e., a bilateral strategy) may be most effective to maximize performance gains.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Qualidade de Vida , Reabilitação do Acidente Vascular Cerebral/métodos , Marcha , Acidente Vascular Cerebral/complicações , Caminhada , Fenômenos Biomecânicos
19.
Gait Posture ; 96: 275-278, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716486

RESUMO

BACKGROUND: In individuals with post-stroke hemiparesis, reduced paretic leg propulsion, measured through anterior ground reaction forces (AGRF), is a common and functionally-relevant gait impairment. Deficits in other biomechanical variables such as plantarflexor moment, ankle power, and ankle excursion contribute to reduced propulsion. While reduction in the magnitude of propulsion post-stroke is well studied, here, our objective was to compare the timing of propulsion-related biomechanical variables. RESEARCH QUESTION: Are there differences in the timing of propulsion and propulsion-related biomechanical variables between able-bodied individuals, the paretic leg, and non-paretic leg of post-stroke individuals? METHODS: Nine able-bodied and 13 post-stroke individuals completed a gait analysis session comprising treadmill walking trials at each participant's self-selected speed. Two planned independent sample t-tests were conducted to detect differences in the timing of dependent variables between the paretic versus non-paretic leg post-stroke and paretic leg versus the dominant leg of able-bodied individuals. RESULTS: Post-stroke individuals demonstrated significantly earlier timing of peak AGRF of their paretic leg versus their non-paretic leg and able-bodied individuals. Post-stroke participants displayed earlier timing of peak power of their paretic leg versus their non-paretic leg and able-bodied individuals, and earlier timing of peak ankle moment of the paretic leg versus able-bodied. No significant differences were detected in the timing of peak ankle angle. SIGNIFICANCE: The earlier onset of peak AGRF, peak ankle power, and peak ankle moment may be an important, under-studied biomechanical factor underlying stroke gait impairments, and a potential therapeutic target for stroke gait retraining. Future investigations can explore the use of interventions such as gait biofeedback to normalize the timing of these peaks, thereby improving propulsion and walking function post-stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Marcha , Humanos , Paresia/etiologia , Acidente Vascular Cerebral/complicações , Caminhada
20.
Front Neurol ; 13: 800338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585850

RESUMO

Gait dysfunction and fall risk have been well documented in people with Alzheimer's Disease (AD) and individuals with mild cognitive impairment (MCI). Normal locomotor adaptation may be an important prerequisite for normal and safe community walking function, especially in older adults with age-related neural, musculoskeletal, or cardiovascular changes and cognitive impairments. The split-belt walking task is a well-studied and robust method to evaluate locomotor adaptation (e.g., the ability to adjust stepping movements to changing environmental demands). Here, we capitalized on the split-belt adaptation task to test our hypothesis that a decreased capacity for locomotor adaptation may be an important contributing factor and indicator of increased fall risk and cognitive decline in older individuals with MCI and AD. The objectives of this study were to (1) compare locomotor adaptation capacity in MCI and AD compared to healthy older adults (HOA) during split-belt treadmill walking, and (2) evaluate associations between locomotor adaptation and cognitive impairments. Our results demonstrated a significant decrease in split-belt locomotor adaptation magnitude in older individuals with MCI and AD compared to HOA. In addition, we found significant correlations between the magnitude of early adaptation and de-adaptation vs. cognitive test scores, demonstrating that individuals with greater cognitive impairment also display a reduced capacity to adapt their walking in response to the split-belt perturbation. Our study takes an important step toward understanding mechanisms underlying locomotor dysfunction in older individuals with cognitive impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA