Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 50(40): 8656-63, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21877689

RESUMO

Helicobacter pylori's unique ability to colonize and survive in the acidic environment of the stomach is critically dependent on uptake of urea through the urea channel, HpUreI. Hence, HpUreI may represent a promising target for the development of specific drugs against this human pathogen. To obtain insight into the structure-function relationship of this channel, we developed conditions for the high-yield expression and purification of stable recombinant HpUreI. Detergent-solubilized HpUreI forms a homotrimer, as determined by chemical cross-linking. Urea dissociation kinetics of purified HpUreI were determined by means of the scintillation proximity assay, whereas urea efflux was measured in HpUreI-containing proteoliposomes using stopped-flow spectrometry to determine the kinetics and selectivity of the urea channel. The kinetic analyses revealed that urea conduction in HpUreI is pH-sensitive and saturable with a half-saturation concentration (or K(0.5)) of ~163 mM. The extent of binding of urea by HpUreI was increased at lower pH; however, the apparent affinity of urea binding (~150 mM) was not significantly pH-dependent. The solute selectivity analysis indicated that HpUreI is highly selective for urea and hydroxyurea. Removing either amino group of urea molecules diminishes their permeability through HpUreI. Similar to urea conduction, diffusion of water through HpUreI is pH-dependent with low water permeability at neutral pH.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Helicobacter pylori/química , Helicobacter pylori/genética , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Membrana Transportadoras/genética , Ligação Proteica , Especificidade por Substrato , Ureia/química
2.
Proc Natl Acad Sci U S A ; 108(10): 3970-5, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368153

RESUMO

AmtB, a member of the Rh/Amt/MEP superfamily, is responsible for ammonia transport in Escherichia coli. The ammonia pathway in AmtB consists of a narrow hydrophobic lumen in between hydrophilic periplasmic and cytoplasmic vestibules. A series of molecular dynamics simulations (greater than 0.4 µs in total) were performed to determine the mechanism of solute recruitments and selectivity by the periplasmic vestibule. The results show that the periplasmic vestibule plays a crucial role in solute selectivity, and its solute preferences follow the order of NH4(+) > NH3 > CO2. Based on our results, NH4(+) recruitment is initiated by its interaction with either E70 or E225, highly conserved residues located at the entrance of the vestibule. Subsequently, the backbone carbonyl groups at the periplasmic vestibule direct NH4(+) to the conserved aromatic cage at the bottom of the vestibule (known as the Am1 site). The umbrella sampling simulations suggest that the conserved residue D160 is not directly involved in the ammonia conduction; rather its main function is to keep the structure of periplasmic vestibule intact. The MD simulations also revealed that two partially stacked phenyl rings of F107 and F215, separating the periplasmic vestibule from the hydrophobic lumen, flip open and closed simultaneously with a frequency of approximately 10(8) flipping events per second. These results show how the periplasmic vestibule selectively recruits NH4(+) to the Am1 site, and also that the synchronized flipping of two phenyl rings potentially facilitates the solute transition from the periplasmic vestibule to the hydrophobic lumen in the Rh/Amt/MEP superfamily.


Assuntos
Proteínas de Escherichia coli/fisiologia , Periplasma/fisiologia , Proteínas de Escherichia coli/química , Ativação do Canal Iônico , Modelos Moleculares , Simulação de Dinâmica Molecular , Termodinâmica
3.
Nat Struct Mol Biol ; 15(6): 619-25, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18500352

RESUMO

The 2.05-A resolution structure of the aquaglyceroporin from the malarial parasite Plasmodium falciparum (PfAQP), a protein important in the parasite's life cycle, has been solved. The structure provides key evidence for the basis of water versus glycerol selectivity in aquaporin family members. Unlike its closest homolog of known structure, GlpF, the channel conducts both glycerol and water at high rates, framing the question of what determines high water conductance in aquaporin channels. The universally conserved arginine in the selectivity filter is constrained by only two hydrogen bonds in GlpF, whereas there are three in all water-selective aquaporins and in PfAQP. The decreased cost of dehydrating the triply-satisfied arginine cation may provide the basis for high water conductance. The two Asn-Pro-Ala (NPA) regions of PfAQP, which bear rare substitutions to Asn-Leu-Ala (NLA) and Asn-Pro-Ser (NPS), participate in preserving the orientation of the selectivity filter asparagines in the center of the channel.


Assuntos
Aquagliceroporinas/química , Plasmodium falciparum/química , Porinas/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Arginina , Cristalografia por Raios X , Conformação Proteica , Água/química
4.
Physiology (Bethesda) ; 21: 419-29, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17119155

RESUMO

The atomic structures of the first members of the Amt/MEP/Rh family show that they are 11-crossing membrane proteins that form trimers in the membrane. Each monomer supports a hydrophobic channel that conducts NH(3) but not any water or ions. The reprotonation of NH(3) on the receiving side raises the pH on that side in the absence of metabolism of NH(3), and there is no transfer of protons through the protein.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Sistema do Grupo Sanguíneo Rh-Hr/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Gases , Humanos , Dados de Sequência Molecular , Conformação Proteica , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 101(39): 14045-50, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15377788

RESUMO

We determined the x-ray structure of bovine aquaporin 0 (AQP0) to a resolution of 2.2 A. The structure of this eukaryotic, integral membrane protein suggests that the selectivity of AQP0 for water transport is based on the identity and location of signature amino acid residues that are hallmarks of the water-selective arm of the AQP family of proteins. Furthermore, the channel lumen is narrowed only by two, quasi-2-fold related tyrosine side chains that might account for reduced water conductance relative to other AQPs. The channel is functionally open to the passage of water because there are eight discreet water molecules within the channel. Comparison of this structure with the recent electron-diffraction structure of the junctional form of sheep AQP0 at pH 6.0 that was interpreted as closed shows no global change in the structure of AQP0 and only small changes in side-chain positions. We observed no structural change to the channel or the molecule as a whole at pH 10, which could be interpreted as the postulated pH-gating mechanism of AQP0-mediated water transport at pH >6.5. Contrary to the electron-diffraction structure, the comparison shows no evidence of channel gating induced by association of the extracellular domains of AQP0 at pH 6.0. Our structure aids the analysis of the interaction of the extracellular domains and the possibility of a cell-cell adhesion role for AQP0. In addition, our structure illustrates the basis for formation of certain types of cataracts that are the result of mutations.


Assuntos
Aquaporinas/química , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Aquaporinas/metabolismo , Transporte Biológico , Bovinos , Cristalografia por Raios X , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ovinos , Eletricidade Estática , Água/química , Água/metabolismo
6.
Science ; 305(5690): 1587-94, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15361618

RESUMO

The first structure of an ammonia channel from the Amt/MEP/Rh protein superfamily, determined to 1.35 angstrom resolution, shows it to be a channel that spans the membrane 11 times. Two structurally similar halves span the membrane with opposite polarity. Structures with and without ammonia or methyl ammonia show a vestibule that recruits NH4+/NH3, a binding site for NH4+, and a 20 angstrom-long hydrophobic channel that lowers the NH4+ pKa to below 6 and conducts NH3. Favorable interactions for NH3 are seen within the channel and use conserved histidines. Reconstitution of AmtB into vesicles shows that AmtB conducts uncharged NH3.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/química , Cristalização , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Potenciais da Membrana , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Compostos de Amônio Quaternário/metabolismo , Sistema do Grupo Sanguíneo Rh-Hr/química , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo , Alinhamento de Sequência , Água/química , Água/metabolismo
7.
J Synchrotron Radiat ; 11(Pt 1): 86-8, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14646142

RESUMO

The 2.2 A resolution crystal structure of GlpF, an E. coli aquaporin that facilitates the flow of glycerol, water and other small solutes, provides much insight into the molecular function and selectivity of aquaporins. Using GlpF and its atomic structure as a paradigm for the ten highly conserved human aquaporins, site-directed mutagenesis has been used to mutate residues that are possibly integral to the structure and function of different aquaporins. X-ray crystallography and other biophysical and molecular simulation methods allows for assessment of these changes at the structural and functional level. Initial attempts to convert the glycerol specific properties of GlpF towards a water specific aquaporin resulted in the shifting of GlpF channel properties towards that of the water aquaporins. This result reveals the great possibility of emulating and deciphering the function of other aquaporins with GlpF via mutagenesis and investigation of structure and function.


Assuntos
Aquaporinas/química , Aquaporinas/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Glicerol/metabolismo , Modelos Moleculares , Água/metabolismo , Simulação por Computador , Ativação do Canal Iônico/fisiologia , Mutagênese Sítio-Dirigida , Mutação , Relação Estrutura-Atividade
8.
FEBS Lett ; 555(1): 79-84, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14630323

RESUMO

The atomic structures of a transmembrane water plus glycerol conducting channel (GlpF), and now of aquaporin Z (AqpZ) from the same species, Escherichia coli, bring the total to three atomic resolution structures in the aquaporin (AQP) family. Members of the AQP family each assemble as tetramers of four channels. Common helical axes support a wider channel in the glycerol plus water channel paradigm, GlpF. Water molecules form a single hydrogen bonded file throughout the 28 A long channel in AqpZ. The basis for absolute exclusion of proton or hydronium ion conductance through the line of water is explored using simulations.


Assuntos
Aquaporinas/química , Proteínas de Escherichia coli/química , Proteínas de Membrana , Sequência de Aminoácidos , Aquaporina 1 , Aquaporinas/genética , Aquaporinas/metabolismo , Metabolismo dos Carboidratos , Condutividade Elétrica , Eletroquímica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Duplicação Gênica , Glicerol/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Canais de Potássio/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Água/metabolismo
9.
Curr Opin Struct Biol ; 13(4): 424-31, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12948772

RESUMO

The aqua (glycero) porins conduct water (and glycerol) across cell membranes. The structure of these channels reveals a tripathic channel that supports a hydrophobic surface and, opposite to this, a line of eight hydrogen-bond acceptors and four hydrogen-bond donors. The eight carbonyls act as acceptors for water (or glycerol OH) molecules. The central water molecule in the channel is oriented to polarize hydrogen atoms outward from the center. This arrangement suggests how the structure prevents the potentially lethal conduction of protons across the membrane. The structure also suggests the mechanism behind the selectivity of aquaglyceroporins for glycerol, the basis for enantioselectivity among alditols, and the basis for the prevention of any leakage of the electrochemical gradient.


Assuntos
Aquaporinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicerol/metabolismo , Aquaporinas/química , Proteínas de Escherichia coli/química , Íons/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Prótons , Água/metabolismo
10.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 4): 653-9, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11914490

RESUMO

Contrary to conventional wisdom, it has been shown recently that termites do not necessarily depend on symbiotic bacteria to process cellulose. They secrete their own cellulases, mainly endo-beta-1,4-glucanase and beta-1,4-glucosidase. Here, the first structure of an endogenous endoglucanase from the higher termite Nasutitermes takasagoensis (NtEgl) is reported at 1.40 A resolution. NtEgl has the general folding of an (alpha/alpha)(6) barrel, which is a common folding pattern for glycosyl hydrolase family 9. Three-dimensional structural analysis shows that the conserved Glu412 is the catalytic acid/base residue and the conserved Asp54 or Asp57 is the base. The enzyme has a Ca(2+)-binding site near its substrate-binding cleft. Comparison between the structure of the Ca(2+)-free enzyme produced by reducing the pH of the soaked crystal from 5.6 (the pH of optimum enzyme activity) to 2.5 with that of the Ca(2+)-bound enzyme did not show significant differences in the locations of the C(alpha) atoms. The main differences are in the conformation of the residue side chains ligating the Ca(2+) ion. The overall structure of NtEgl at pH 6.5 is similar to that at pH 5.6. The major change observed was in the conformation of the side chain of the catalytic acid/base Glu412, which rotates from a hydrophobic cavity to a relatively hydrophilic environment. This side-chain displacement may decrease the enzyme activity at higher pH.


Assuntos
Celulase/química , Isópteros/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
11.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 4): 660-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11914491

RESUMO

The fungus Aspergillus niger is a main source of industrial cellulase. beta-1,4-Endoglucanase is the major component of cellulase from A. niger. In spite of widespread applications, little is known about the structure of this enzyme. Here, the structure of beta-1,4-endoglucanase from A. niger (EglA) was determined at 2.1 A resolution. Although there is a low sequence identity between EglA and CelB2, another member of family 12, the three-dimensional structures of their core regions are quite similar. The structural differences are mostly found in the loop regions, where CelB2 has an extra beta-sheet (beta-sheet C) at the non-reducing end of the binding cleft of the native enzyme. Incubation of EglA with PdCl(2) irreversibly inhibits the EglA activity. Structural studies of the enzyme-palladium complex show that three Pd(2+) ions bind to each EglA molecule. One of the Pd(2+) ions forms a coordinate covalent bond with Met118 S(delta) and the nucleophilic Glu116 O(epsilon1) at the active site of the enzyme. The other two Pd(2+) ions bind on the surface of the protein. Binding of Pd(2+) ions to EglA does not change the general conformation of the backbone of the protein significantly. Based on this structural study, one can conclude that the palladium ion directly binds to and blocks the active site of EglA and thus inactivates the enzyme.


Assuntos
Aspergillus niger/química , Celulase/química , Paládio/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Xilano Endo-1,3-beta-Xilosidase , Xilosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA