Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem ; 13(3): 226-230, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589784

RESUMO

All superheavy elements (SHEs), with atomic numbers (Z) ≥104, have been artificially synthesized one atom at a time and their chemical properties are largely unknown. Because these heavy nuclei have short lifetimes as well as extremely low production rates, chemical experiments need to be carried out on single atoms and have mostly been limited to adsorption and extraction. We have now investigated the precipitation properties of the SHE Rf (Z = 104). A co-precipitation method with samarium hydroxide had previously established that the co-precipitation behaviour of a range of elements reflected these elements' tendency to form hydroxide precipitates and/or ammine complex ions. Here we investigated co-precipitation of Rf in basic solutions containing NH3 or NaOH. Comparisons between the behaviour of Rf with that of Zr and Hf (lighter homologues of Rf) and actinide Th (a pseudo-homologue of Rf) showed that Rf does not coordinate strongly with NH3, but forms a hydroxide (co)precipitate that is expected to be Rf(OH)4.

2.
Dalton Trans ; 45(47): 18827-18831, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27853791

RESUMO

We successfully observed the equilibrium state of the chemical reactions for superheavy elements on a one-atom-at-a-time scale; we investigated the time dependence of the extraction behaviour of element 104, Rf. The distribution coefficient of Rf in 9 M HCl was found to be higher than those of its homologous elements, probably due to differences in the chloride complexation of Rf.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA