Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Macromolecules ; 57(13): 6013-6023, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005948

RESUMO

Hydrophilic polymers have found ubiquitous use in drug delivery and novel polymer materials to advance drug delivery systems are highly sought after. Herein, an amylose mimic (PEGose) was combined with poly(lactic acid) (PLA) in an amphiphilic block copolymer to form PEG-free nanoparticles as an alternative to PEG-based nanomedicines. The block copolymer self-assembled into 150-200 nm particles with a narrow dispersity in aqueous environment. The formed nanoparticles were capable of encapsulation, the sustained release of both hydrophilic and hydrophobic dyes. Moreover, the nanoparticles were found to be remarkably stable and had a very low cytotoxicity and a high propensity to penetrate cells. These results highlight the potential of PEGose-b-PLA to be used in drug delivery with a new hydrophilic building block.

2.
J Am Chem Soc ; 146(13): 8981-8990, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513269

RESUMO

The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a ß-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/química , Bactérias Gram-Negativas/metabolismo , Canamicina Quinase/química , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Peptídeos
3.
Angew Chem Int Ed Engl ; 63(9): e202315850, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134222

RESUMO

Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.


Assuntos
Proteína de Transporte de Acila , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Microscopia Crioeletrônica , Sítios de Ligação , Domínio Catalítico , Proteína de Transporte de Acila/metabolismo
4.
ACS Nano ; 17(21): 21585-21594, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922402

RESUMO

Cucurbiturils (CBs), barrel-shaped macrocyclic molecules, are capable of self-assembling at the surface of nanomaterials in their native state, via their carbonyl-ringed portals. However, the symmetrical two-portal structure typically leads to aggregated nanomaterials. We demonstrate that fluorescent quantum dot (QD) aggregates linked with CBs can be broken-up, retaining CBs adsorbed at their surface, via inclusion of guests in the CB cavity. Simultaneously, the QD surface is modified by a functional tail on the guest, thus the high affinity host-guest binding (logKa > 9) enables a non-covalent, click-like modification of the nanoparticles in aqueous solution. We achieved excellent modification efficiency in several functional QD conjugates as protein labels. Inclusion of weaker-binding guests (logKa = 4-6) enables subsequent displacement with stronger binders, realising modular switchable surface chemistries. Our general "hook-and-eye" approach to host-guest chemistry at nanomaterial interfaces will lead to divergent routes for nano-architectures with rich functionalities for theranostics and photonics in aqueous systems.

5.
Chembiochem ; 24(17): e202300185, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195753

RESUMO

The human pathogen Pseudomonas aeruginosa has a number of virulence factors at its disposal that play crucial roles in the progression of infection. LasB is one of the major virulence factors and exerts its effects through elastolytic and proteolytic activities aimed at dissolving connective tissue and inactivating host defense proteins. LasB is of great interest for the development of novel pathoblockers to temper the virulence, but access has thus far largely been limited to protein isolated from Pseudomonas cultures. Here, we describe a new protocol for high-level production of native LasB in Escherichia coli. We demonstrate that this facile approach is suitable for the production of mutant, thus far inaccessible LasB variants, and characterize the proteins biochemically and structurally. We expect that easy access to LasB will accelerate the development of inhibitors for this important virulence factor.


Assuntos
Metaloendopeptidases , Fatores de Virulência , Humanos , Fatores de Virulência/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/metabolismo , Escherichia coli/metabolismo , Virulência
6.
Nat Chem ; 15(4): 560-568, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894702

RESUMO

Ribosomally synthesized and post-translationally modified peptide natural products have provided many highly unusual scaffolds. This includes the intriguing alkaloids crocagins, which possess a tetracyclic core structure and whose biosynthesis has remained enigmatic. Here we use in vitro experiments to demonstrate that three proteins, CgnB, CgnC and CgnE, are sufficient for the production of the hallmark tetracyclic crocagin core from the precursor peptide CgnA. The crystal structures of the homologues CgnB and CgnE reveal them to be the founding members of a peptide-binding protein family and allow us to rationalize their distinct functions. We further show that the hydrolase CgnD liberates the crocagin core scaffold, which is subsequently N-methylated by CgnL. These insights allow us to propose a biosynthetic scheme for crocagins. Bioinformatic analyses based on these data led to the discovery of related biosynthetic pathways that may provide access to a structurally diverse family of peptide-derived pyrroloindoline alkaloids.


Assuntos
Proteínas , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Zinco/química , Zinco/metabolismo , Multimerização Proteica , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína , Biocatálise
7.
Nat Chem Biol ; 19(1): 7-8, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36280793
8.
J Am Chem Soc ; 144(11): 5136-5144, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263083

RESUMO

Thioholgamides are ribosomally synthesized and posttranslationally modified peptides (RiPPs), with potent activity against cancerous cell lines and an unprecedented structure. Despite being one of the most structurally and chemically complex RiPPs, very few biosynthetic steps have been elucidated. Here, we report the complete in vitro reconstitution of the biosynthetic pathway. We demonstrate that thioamidation is the first step and acts as a gatekeeper for downstream processing. Thr dehydration follows thioamidation, and our studies reveal that both these modifications require the formation of protein complexes─ThoH/I and ThoC/D. Harnessing the power of AlphaFold, we deduce that ThoD acts as a lyase and also proposes putative catalytic residues. ThoF catalyzes the oxidative decarboxylation of the terminal Cys, and the subsequent macrocyclization is facilitated by ThoE. This is followed by Ser dehydration, which is also carried out by ThoC/D. ThoG is responsible for histidine bis-N-methylation, which is a prerequisite for His ß-hydroxylation─a modification carried out by ThoJ. The last step of the pathway is the removal of the leader peptide by ThoK to afford mature thioholgamide.


Assuntos
Desidratação , Sinais Direcionadores de Proteínas , Histidina , Humanos , Peptídeos/química , Processamento de Proteína Pós-Traducional
9.
Nat Chem Biol ; 17(11): 1118-1119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34475563
10.
Chem Commun (Camb) ; 57(52): 6372-6375, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34075907

RESUMO

Ribosomal natural products contain exquisite post-translational peptide modifications that are installed by a range of pathway-specific enzymes. We present proof of principle for a Sortase A-based approach that enables peptide modification by enzymes from unrelated pathways. This allowed the one-pot synthesis of a new-to-nature, hybrid ribosomal natural product.


Assuntos
Produtos Biológicos/metabolismo , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas , Motivos de Aminoácidos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Cisteína Endopeptidases/metabolismo , Lectina de Ligação a Manose/metabolismo , Peptídeos/química , Peptídeos Cíclicos/metabolismo , Ribossomos/metabolismo
11.
Nat Prod Rep ; 38(9): 1659-1683, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621290

RESUMO

Covering: 1950s up to the end of 2020Bottromycins are a class of macrocyclic peptide natural products that are produced by several Streptomyces species and possess promising antibacterial activity against clinically relevant multidrug-resistant pathogens. They belong to the ribosomally synthesised and post-translationally modified peptide (RiPP) superfamily of natural products. The structure contains a unique four-amino acid macrocycle formed via a rare amidine linkage, C-methylation and a D-amino acid. This review covers all aspects of bottromycin research with a focus on recent years (2009-2020), in which major advances in total synthesis and understanding of bottromycin biosynthesis were achieved.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Processamento de Proteína Pós-Traducional
12.
Nat Prod Rep ; 38(1): 130-239, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32935693

RESUMO

Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.


Assuntos
Biologia Computacional/métodos , Enzimas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Produtos Biológicos/química , Produtos Biológicos/classificação , Produtos Biológicos/metabolismo , Enzimas/química , Hidroxilação , Metilação , Peptídeos/classificação , Peptídeos/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas/fisiologia , Ribossomos/metabolismo
13.
J Am Chem Soc ; 142(49): 20560-20565, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249843

RESUMO

Bottromycins are ribosomally synthesized and post-translationally modified peptide natural product antibiotics that are effective against high-priority human pathogens such as methicillin-resistant Staphylococcus aureus. The total synthesis of bottromycins involves at least 17 steps, with a poor overall yield. Here, we report the characterization of the cytochrome P450 enzyme BotCYP from a bottromycin biosynthetic gene cluster. We determined the structure of a close BotCYP homolog and used our data to conduct the first large-scale survey of P450 enzymes associated with RiPP biosynthetic gene clusters. We demonstrate that BotCYP converts a C-terminal thiazoline to a thiazole via an oxidative decarboxylation reaction and provides stereochemical resolution for the pathway. Our data enable the two-pot in vitro production of the bottromycin core scaffold and may allow the rapid generation of bottromycin analogues for compound development.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Família Multigênica , Oxirredução , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Processamento de Proteína Pós-Traducional , Estereoisomerismo , Tiazóis/química
14.
ACS Chem Biol ; 15(10): 2815-2819, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32965102

RESUMO

Thioviridamide-like compounds, including thioholgamides, are ribosomally synthesized and post-translationally modified peptide natural products with potent anticancer cell activity and an unprecedented structure. Very little is known about their biosynthesis, and we were intrigued by the ß-hydroxy-N1, N3-dimethylhistidinium moiety found in these compounds. Here we report the construction of a heterologous host capable of producing thioholgamide with a 15-fold increased yield compared to the wild-type strain. A knockout of thoJ, encoding a predicted nonheme monooxygenase, shows that ThoJ is essential for thioholgamide ß-hydroxylation. The crystal structure of ThoJ exhibits a typical mono/dioxygenase fold with conserved key active-site residues. Yet, ThoJ possesses a very large substrate binding pocket that appears suitable to receive a cyclic thioholgamide intermediate for hydroxylation. The improved production of the heterologous host will enable the dissection of the individual biosynthetic steps involved in biosynthesis of this exciting RiPP family.


Assuntos
Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/metabolismo , Peptídeos Cíclicos/metabolismo , Tioamidas/metabolismo , Proteínas de Bactérias/química , Histidina/química , Hidroxilação , Oxigenases de Função Mista/química , Peptídeos Cíclicos/química , Processamento de Proteína Pós-Traducional , Streptomyces/enzimologia , Streptomyces/metabolismo , Especificidade por Substrato , Tioamidas/química
15.
ACS Chem Biol ; 15(8): 2221-2231, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32639716

RESUMO

Cittilins are secondary metabolites from myxobacteria comprised of three l-tyrosines and one l-isoleucine forming a bicyclic tetrapeptide scaffold with biaryl and aryl-oxygen-aryl ether bonds. Here we reveal that cittilins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products, for which only the crocagins have been reported from myxobacteria. A 27 amino acid precursor peptide harbors a C-terminal four amino acid core peptide, which is enzymatically modified and finally exported to yield cittilins. The small biosynthetic gene cluster responsible for cittilin biosynthesis also encodes a cytochrome P450 enzyme and a methyltransferase, whereas a gene encoding a prolyl endopeptidase for the cleavage of the precursor peptide is located outside of the cittilin biosynthetic gene cluster. We confirm the roles of the biosynthetic genes responsible for the formation of cittilins using targeted gene inactivation and heterologous expression in Streptomyces ssp. We also report first steps toward the biochemical characterization of the proposed biosynthetic pathway in vitro. An investigation of the cellular uptake properties of cittilin A connected it to a potential biological function as an inhibitor of the prokaryotic carbon storage regulator A (CsrA).


Assuntos
Proteínas de Bactérias/biossíntese , Myxococcus xanthus/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional
16.
Nat Chem Biol ; 16(9): 1034, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32669684

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Chem Biol ; 16(9): 1013-1018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601484

RESUMO

D-amino acids endow peptides with diverse, desirable properties, but the post-translational and site-specific epimerization of L-amino acids into their D-counterparts is rare and chemically challenging. Bottromycins are ribosomally synthesized and post-translationally modified peptides that have overcome this challenge and feature a D-aspartate (D-Asp), which was proposed to arise spontaneously during biosynthesis. We have identified the highly unusual α/ß-hydrolase (ABH) fold enzyme BotH as a peptide epimerase responsible for the post-translational epimerization of L-Asp to D-Asp during bottromycin biosynthesis. The biochemical characterization of BotH combined with the structures of BotH and the BotH-substrate complex allowed us to propose a mechanism for this reaction. Bioinformatic analyses of BotH homologs show that similar ABH enzymes are found in diverse biosynthetic gene clusters. This places BotH as the founding member of a group of atypical ABH enzymes that may be able to epimerize non-Asp stereocenters across different families of secondary metabolites.


Assuntos
Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Família Multigênica , Peptídeos Cíclicos/metabolismo , Conformação Proteica , Dobramento de Proteína , Racemases e Epimerases/genética , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
18.
J Med Chem ; 63(15): 8359-8368, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32470298

RESUMO

In light of the global antimicrobial-resistance crisis, there is an urgent need for novel bacterial targets and antibiotics with novel modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant role in the infection process and thereby represent promising antivirulence targets. Here, we report novel N-aryl-3-mercaptosuccinimide inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human metalloproteases. Additionally, the inhibitors demonstrate no signs of cytotoxicity against selected human cell lines and in a zebrafish embryo toxicity model. Furthermore, the most active ColH inhibitor shows a significant reduction of collagen degradation in an ex vivo pig-skin model.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium histolyticum/enzimologia , Colagenases/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/enzimologia , Succinimidas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Linhagem Celular , Infecções por Clostridium/tratamento farmacológico , Clostridium histolyticum/efeitos dos fármacos , Humanos , Inibidores de Metaloproteinases de Matriz/química , Metaloendopeptidases/antagonistas & inibidores , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Succinimidas/química , Suínos , Peixe-Zebra
19.
ACS Chem Biol ; 15(3): 751-757, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31935054

RESUMO

Marine cyanobacteria (blue-green algae) have been shown to possess an enormous capacity to produce structurally diverse natural products that exhibit a broad spectrum of potent biological activities, including cytotoxic, antifungal, antiparasitic, antiviral, and antibacterial activities. Using mass-spectrometry-guided fractionation together with molecular networking, cyanobacterial field collections from American Samoa and Palmyra Atoll yielded three new cyclic peptides, tutuilamides A-C. Their structures were established by spectroscopic techniques including 1D and 2D NMR, HR-MS, and chemical derivatization. Structure elucidation was facilitated by employing advanced NMR techniques including nonuniform sampling in combination with the 1,1-ADEQUATE experiment. These cyclic peptides are characterized by the presence of several unusual residues including 3-amino-6-hydroxy-2-piperidone and 2-amino-2-butenoic acid, together with a novel vinyl chloride-containing residue. Tutuilamides A-C show potent elastase inhibitory activity together with moderate potency in H-460 lung cancer cell cytotoxicity assays. The binding mode to elastase was analyzed by X-ray crystallography revealing a reversible binding mode similar to the natural product lyngbyastatin 7. The presence of an additional hydrogen bond with the amino acid backbone of the flexible side chain of tutuilamide A, compared to lyngbyastatin 7, facilitates its stabilization in the elastase binding pocket and possibly explains its enhanced inhibitory potency.


Assuntos
Antineoplásicos/isolamento & purificação , Cianobactérias/química , Depsipeptídeos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Neoplasias Pulmonares/tratamento farmacológico , Elastase Pancreática/antagonistas & inibidores , Peptídeos Cíclicos/isolamento & purificação , Aminoácidos/química , Aminobutiratos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/farmacologia , Piperidonas/química , Ligação Proteica , Espectrometria de Massas em Tandem , Cloreto de Vinil/química
20.
Chem Sci ; 12(4): 1286-1294, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163891

RESUMO

Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound. To explore the effect of molecular editing, selectively modified oligosaccharides were prepared via a convergent α-selective strategy. Incubation experiments in purified α-amylase and α-glucosidase, and in human and murine blood serum, provide insight into the influence of fluorine on the hydrolytic stability of these clinically important scaffolds. Enhancements of ca. 1 order of magnitude result from these subtle single point mutations. Modification at the monosaccharide furthest from the probable enzymatic cleavage termini leads to the greatest improvement in stability. In the case of α-amylase, docking studies revealed that retentive C2-fluorination at the reducing end inverts the orientation in which the substrate is bound. A co-crystal structure of human α-amylase revealed maltose units bound at the active-site. In view of the evolving popularity of C(sp3)-F bioisosteres in medicinal chemistry, and the importance of maltodextrins in bacterial imaging, this discovery begins to reconcile the information-rich nature of carbohydrates with their intrinsic hydrolytic vulnerabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA