Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Am J Pathol ; 194(3): 415-429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103888

RESUMO

Small-cell neuroendocrine carcinoma (SCNEC) of the cervix is a rare disease characterized by a high incidence of mixed tumors with other types of cancer. The mechanism underlying this mixed phenotype is not well understood. This study established a panel of organoid lines from patients with SCNEC of the cervix and ultimately focused on one line, which retained a mixed tumor phenotype, both in vitro and in vivo. Histologically, both organoids and xenograft tumors showed distinct differentiation into either SCNEC or adenocarcinoma in some regions and ambiguous differentiation in others. Tracking single cells indicated the existence of cells with bipotential differentiation toward SCNEC and adenocarcinomas. Single-cell transcriptional analysis identified three distinct clusters: SCNEC-like, adenocarcinoma-like, and a cluster lacking specific differentiation markers. The expression of neuroendocrine markers was enriched in the SCNEC-like cluster but not exclusively. Human papillomavirus 18 E6 was enriched in the SCNEC-like cluster, which showed higher proliferation and lower levels of the p53 pathway. After treatment with anticancer drugs, the expression of adenocarcinoma markers increased, whereas that of SCNEC decreased. Using a reporter system for keratin 19 expression, changes in the differentiation of each cell were shown to be associated with the shift in differentiation induced by drug treatment. These data suggest that mixed SCNEC/cervical tumors have a clonal origin and are characterized by an ambiguous and flexible differentiation state.


Assuntos
Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias do Colo do Útero , Feminino , Humanos , Colo do Útero/metabolismo , Colo do Útero/patologia , Neoplasias do Colo do Útero/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Carcinoma de Células Pequenas/terapia
2.
Hum Cell ; 36(6): 2099-2112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634223

RESUMO

Estrogen receptor (ER) expression in breast cancer can change during progression and the treatment, but the mechanism has not been well studied. In this study, we successfully prepared organoids from samples obtained from 33 luminal-type breast cancer patients and studied their ER expression. The expression status was well maintained in primary organoids, whereas it decreased after passaging in most of the cases. In fact, the studied organoid lines were classified into those that retained a high level of ER expression (9%), those that completely lost it (9%), and those that repressed it to varying degrees (82%). In some cases, the ER expression was suddenly and drastically decreased after passaging. Marker protein immunohistochemistry revealed that after passaging, the differentiation status shifted from a luminal- to a basal-like status. Differentially expressed genes suggested the activation of NOTCH signaling in the passaged organoids, wherein a NOTCH inhibitor was able to substantially rescue the decreased ER expression and alter the differentiation status. Our findings suggest that the differentiation status of luminal-type cancer cells is quite flexible, and that by inhibiting the NOTCH signaling we can preserve the differentiation status of luminal-type breast cancer organoids.

3.
Cancer Sci ; 114(9): 3636-3648, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37357017

RESUMO

The bone morphogenetic protein (BMP) pathway promotes differentiation and induces apoptosis in normal colorectal epithelial cells. However, its role in colorectal cancer (CRC) is controversial, where it can act as context-dependent tumor promoter or tumor suppressor. Here we have found that CRC cells reside in a BMP-rich environment based on curation of two publicly available RNA-sequencing databases. Suppression of BMP using a specific BMP inhibitor, LDN193189, suppresses the growth of select CRC organoids. Colorectal cancer organoids treated with LDN193189 showed a decrease in epidermal growth factor receptor, which was mediated by protein degradation induced by leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) expression. Among 18 molecularly characterized CRC organoids, suppression of growth by BMP inhibition correlated with induction of LRIG1 gene expression. Notably, knockdown of LRIG1 in organoids diminished the growth-suppressive effect of LDN193189. Furthermore, in CRC organoids, which are susceptible to growth suppression by LDN193189, simultaneous treatment with LDN193189 and trametinib, an FDA-approved MEK inhibitor, resulted in cooperative growth inhibition both in vitro and in vivo. Taken together, the simultaneous inhibition of BMP and MEK could be a novel treatment option in CRC cases, and evaluating in vitro growth suppression and LRIG1 induction by BMP inhibition using patient-derived organoids could offer functional biomarkers for predicting potential responders to this regimen.


Assuntos
Neoplasias Colorretais , Receptores ErbB , Humanos , Regulação para Baixo , Receptores ErbB/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
4.
Biochem Biophys Res Commun ; 672: 72-80, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343317

RESUMO

BACKGROUND AND AIMS: Fucosylated haptoglobin is a novel glycan biomarker for colorectal and other cancers, while the significance of its precursor, prohaptoglobin (proHp), remains to be elucidated. In this study, we investigated whether proHp can be a colorectal cancer (CRC) biomarker and the biological functions of proHp in CRC using 10-7G, a monoclonal antibody recently developed in our laboratory. MATERIALS AND METHODS: Serum proHp level in 74 patients with CRC was semi-quantified by western blotting, and 5-year recurrence-free survival and overall survival were analyzed for groups stratified by proHp status (high vs. low). We also performed immunohistochemical analyses of 17 CRC tissue sections using 10-7G mAb. The biological functions of proHp were evaluated by overexpressing proHp in CRC cell lines. RESULTS: Serum proHp correlated with the clinical stage and poorer prognosis of CRC. In the primary CRC sections, immune cells were stained positive for 10-7G in ∼50% of the cases. Overexpression of proHp in HCT116 human CRC cells induced epithelial-mesenchymal transition-like changes and promoted cell migration in CRC cells. CONCLUSION: We provide evidence for the first time that proHp has potential as a prognostic biomarker for CRC and demonstrated specific biological activities of proHp.


Assuntos
Neoplasias Colorretais , Haptoglobinas , Humanos , Haptoglobinas/metabolismo , Prognóstico , Células HCT116 , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células
5.
STAR Protoc ; 4(3): 102395, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384521

RESUMO

Patient-derived tumor organoids are three-dimensionally cultured cancer cells that enable a suitable platform for studying heterogeneity and plasticity of cancer. We present a protocol for tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. We describe steps for organoid preparation and culturing using the cancer-tissue-originating spheroid method, maintaining cell-cell contact throughout. We then detail a single-cell-derived spheroid-forming and growth assay, confirming single-cell plating, monitoring growth over time, and isolating slow-growing cells. For complete details on the use and execution of this protocol, please refer to Coppo et al.1.


Assuntos
Bioensaio , Neoplasias Colorretais , Humanos , Organoides , Esferoides Celulares
6.
Sci Rep ; 13(1): 6175, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061516

RESUMO

Glycosylation of proteins and lipids in viruses and their host cells is important for viral infection and is a target for antiviral therapy. Hepatitis B virus (HBV) is a major pathogen that causes acute and chronic hepatitis; it cannot be cured because of the persistence of its covalently closed circular DNA (cccDNA) in hepatocytes. Here we found that Pholiota squarrosa lectin (PhoSL), a lectin that specifically binds core fucose, bound to HBV particles and inhibited HBV infection of a modified human HepG2 cell line, HepG2-hNTCP-C4, that expresses an HBV receptor, sodium taurocholate cotransporting polypeptide. Knockout of fucosyltransferase 8, the enzyme responsible for core fucosylation and that aids receptor endocytosis, in HepG2-hNTCP-C4 cells reduced HBV infectivity, and PhoSL facilitated that reduction. PhoSL also blocked the activity of epidermal growth factor receptor, which usually enhances HBV infection. HBV particles bound to fluorescently labeled PhoSL internalized into HepG2-hNTCP-C4 cells, suggesting that PhoSL might inhibit HBV infection after internalization. As PhoSL reduced the formation of HBV cccDNA, a marker of chronic HBV infection, we suggest that PhoSL could impair processes from internalization to cccDNA formation. Our finding could lead to the development of new anti-HBV agents.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Hepatite B/genética , Lectinas/metabolismo , Hepatócitos/metabolismo , Células Hep G2 , DNA Viral/genética , Replicação Viral/genética , DNA Circular/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108200

RESUMO

Fucosylated proteins are widely used as biomarkers of cancer and inflammation. Fucosylated alpha-fetoprotein (AFP-L3) is a specific biomarker for hepatocellular carcinoma. We previously showed that increases in serum AFP-L3 levels depend on increased expression of fucosylation-regulatory genes and abnormal transport of fucosylated proteins in cancer cells. In normal hepatocytes, fucosylated proteins are selectively secreted in the bile duct but not blood. In cases of cancer cells without cellular polarity, this selective secretion system is destroyed. Here, we aimed to identify cargo proteins involved in the selective secretion of fucosylated proteins, such as AFP-L3, into bile duct-like structures in HepG2 hepatoma cells, which have cellular polarity like, in part, normal hepatocytes. α1-6 Fucosyltransferase (FUT8) is a key enzyme to synthesize core fucose and produce AFP-L3. Firstly, we knocked out the FUT8 gene in HepG2 cells and investigated the effects on the secretion of AFP-L3. AFP-L3 accumulated in bile duct-like structures in HepG2 cells, and this phenomenon was diminished by FUT8 knockout, suggesting that HepG2 cells have cargo proteins for AFP-L3. To identify cargo proteins involved in the secretion of fucosylated proteins in HepG2 cells, immunoprecipitation and the proteomic Strep-tag system experiments followed by mass spectrometry analyses were performed. As a result of proteomic analysis, seven kinds of lectin-like molecules were identified, and we selected vesicular integral membrane protein gene VIP36 as a candidate of the cargo protein that interacts with the α1-6 fucosylation (core fucose) on N-glycan according to bibliographical consideration. Expectedly, the knockout of the VIP36 gene in HepG2 cells suppressed the secretion of AFP-L3 and other fucosylated proteins, such as fucosylated alpha-1 antitrypsin, into bile duct-like structures. We propose that VIP36 could be a cargo protein involved in the apical secretion of fucosylated proteins in HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Células Hep G2 , Proteínas de Membrana , Fucose/metabolismo , Proteômica , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ductos Biliares/metabolismo , Biomarcadores
8.
Hepatol Commun ; 7(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058099

RESUMO

BACKGROUND: Hepatocyte sources that are expandable in vitro are required for liver regenerative medicine and to elucidate the mechanisms underlying the physiological functions of the liver. Liver ductal organoids (LDOs) comprise liver tissue stem cells with a bipotential capacity to differentiate into hepatocyte and cholangiocyte lineages and can thus serve as a hepatocyte source. However, using current differentiation methods, LDOs differentiate into immature hepatocytes while retaining strong cholangiocyte characteristics. We thus investigated an alternative differentiation method for LDOs to achieve hepatocyte maturation. METHODS: We extracted 12 candidate transcription factors to induce hepatocyte differentiation by comparing their gene expression in LDOs and liver tissues. After evaluating the effects of these transcription factors on LDOs, we analyzed the comprehensive gene expression profile, protein expression, and hepatic function in the transduced organoids. RESULTS: We identified a combination of 4 transcription factors, Hnf4a, Foxa1, Prox1, and Hlf, which upregulated hepatic lineage markers and downregulated cholangiocyte markers. Differentiation-induced LDOs showed more hepatocyte-specific characteristics than those with the conventional method, enhancing the transition from cholangiocyte to hepatocyte lineage and hepatic functions, such as liver-specific protein synthesis, lipid droplet deposition, and ammonia detoxification. CONCLUSIONS: Transduction of the 4 transcription factors (Hnf4a, Foxa1, Prox1, and Hlf) is a promising strategy to promote the differentiation of LDOs to obtain mature hepatocyte-like cells with better functionality.


Assuntos
Fígado , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular/genética , Organoides
9.
J Biochem ; 173(6): 487-495, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-36760066

RESUMO

Mac-2 binding protein (Mac-2bp) is a serum glycoprotein that contains seven N-glycans, and Mac-2bp serum levels are increased in patients with several types of cancer and liver disease. Mac-2bp glycosylation isomer has been applied as a clinical biomarker of several diseases, including liver fibrosis. In the present study, we identified fucosylated Mac-2bp in the conditioned medium of cancer cells resistant to anticancer therapies using glycoproteomic analyses. Fucosylation is one of the most important types of glycosylation involved in carcinogenesis and cancer stemness. To establish a next-generation glycan antibody for fucosylated Mac-2bp, we used fucosylation-deficient HEK293T cells to prepare reference Mac-2bp antigens and performed antibody screening. Unexpectedly, the 19-8H mAb obtained with our screen recognized 70K Mac-2bp, which is C-terminus-truncated product, rather than specifically recognizing fucosylated Mac-2bp. We performed immunocytochemistry using our novel 19-8H mAb, which resulted in strong cell surface staining of anticancer drug-resistant cancer cells. Therefore, our novel 19-8H mAb represents a valuable tool for cancer biology research that can help elucidate the biological function of 70K Mac-2bp.


Assuntos
Glicoproteínas , Glicoproteínas de Membrana , Humanos , Anticorpos/metabolismo , Glicosilação , Células HEK293 , Glicoproteínas de Membrana/metabolismo
10.
Glycoconj J ; 40(2): 191-198, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36787035

RESUMO

Changes in protein glycosylation are clinically used as biomarkers. In the present study, we employed a twin cohort to investigate the contributions of genetic and environmental factors to glycan modifications of glycoproteins. Mac-2 binding protein (Mac-2 bp), haptoglobin (Hp), and their glycosylated forms are liver fibrosis and cancer biomarkers. Sera from 107 twin pairs without clinical information were used as a training cohort for the Mac-2 bp and Mac-2 bp glycosylation isomer (M2BPGi) assay. As a validation cohort, 22 twin pairs were enrolled in the study. For each twin pair, one twin was diagnosed with liver or pancreatic disease. For the training cohort, the correlation ratios of serum Mac-2 bp and M2BPGi levels in twin sera with random sequences were 0.30 and 0.018, respectively. The correlation ratios between twin pairs in the validation cohort for serum Mac-2 bp and M2BPGi levels were 0.75 and 0.35, respectively. In contrast, correlation ratios of serum Hp and fucosylated haptoglobin (Fuc-Hp) levels between twin sera with liver and pancreatic disease were 0.49 and 0.16, respectively. Although serum protein levels of glycoproteins are susceptible to genetic factors, characteristic glycan changes of these glycoproteins are more susceptible to environmental factors, including liver and pancreatic disease.


Assuntos
Haptoglobinas , Glicoproteínas de Membrana , Humanos , Haptoglobinas/metabolismo , Glicoproteínas/metabolismo , Biomarcadores , Cirrose Hepática/genética , Glicosilação , Antígenos de Neoplasias/metabolismo
11.
iScience ; 26(2): 105962, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36718360

RESUMO

Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target.

12.
Hum Cell ; 36(2): 752-761, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474106

RESUMO

Selecting the best treatment for individual patients with cancer has attracted attention for improving clinical outcomes. Recent progress in organoid culture may lead to the development of personalized medicine. Unlike molecular-targeting drugs, there are no predictive methods for patient response to standard chemotherapies for ovarian cancer. We prepared organoids using the cancer tissue-originated spheroid (CTOS) method from 61 patients with ovarian cancer with 100% success rate. Chemosensitivity assays for paclitaxel and carboplatin were performed with 84% success rate using the primary organoids from 50 patients who received the chemotherapy. A wide range of sensitivities was observed among organoids for both drugs. All four clinically resistant organoids were resistant to both drugs in 18 cases in which clinical response information was available. Five out of 18 cases (28%) were double-resistant, the response rate of which was compatible with the clinical remission rate. Carboplatin was significantly more sensitive in serous than in clear cell subtypes (P = 0.025). We generated two lines of organoids, screened 1135 drugs, and found several drugs with better combinatory effects with carboplatin than with paclitaxel. Some drugs, including afatinib, have shown an additive effect with carboplatin. The organoid sensitivity assay did not predict the clinical outcomes, both progression free and overall survival.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Detecção Precoce de Câncer , Paclitaxel/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Organoides , Antineoplásicos/farmacologia
13.
Hepatology ; 77(2): 395-410, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995376

RESUMO

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS: We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS: TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Transdiferenciação Celular , Hepatócitos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , NF-kappa B/metabolismo , Quinase Induzida por NF-kappaB
14.
Biochem Biophys Rep ; 32: 101372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36313594

RESUMO

Fucosylation is involved in cancer and inflammation, and several fucosylated proteins, such as AFP-L3 for hepatocellular carcinoma, are used as cancer biomarkers. We previously reported an increase in serum fucosylated haptoglobin (Fuc-Hp) as a biomarker for several cancers, including pancreatic and colon cancer and hepatocellular carcinoma. The regulation of fucosylated protein production is a complex cellular process involving various fucosylation regulatory genes. In this report, we investigated the molecular mechanisms regulating Fuc-Hp production in cytokine-treated hepatoma cells using a partial least squares (PLS) regression model. We found that SLC35C1, which encodes GDP-fucose transporter 1 (GFT1), is the most responsible factor for Fuc-Hp production among various fucosylation regulatory genes. Furthermore, the transcription factor SP1 was essential in regulating SLC35C1 expression. We also found that an SP1 inhibitor was able to suppress Fuc-Hp production without affecting total Hp levels. Taken together, Fuc-Hp production was regulated by SP1 via induction of GFT1 in the hepatoma cell line HepG2.

15.
Oncogene ; 41(38): 4385-4396, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970887

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death and contributes to tumor rejection by cytotoxic lymphocytes in cancer immunosurveillance and immunotherapy. TRAIL and TRAIL receptor agonists have garnered wide popularity as promising agents for cancer therapy. We previously demonstrated that the loss of fucosylation in cancer cells impairs TRAIL sensitivity; however, the precise structures of the fucosylated glycans that regulate TRAIL sensitivity and their carrier molecules remain elusive. Herein, we observed that Lewis glycans among various fucosylated glycans positively regulate TRAIL-induced cell death. Specifically, Lewis glycans on lacto/neolacto glycosphingolipids, but not glycoproteins including TRAIL receptors, enhanced TRAIL-induced formation of the cytosolic caspase 8 complex, without affecting the formation of the membranous receptor complex. Furthermore, type I Lewis glycan expression in colon cancer cell lines and patient-derived cancer organoids was positively correlated with TRAIL sensitivity. These findings provide novel insights into the regulatory mechanism of TRAIL-induced cell death and facilitate the identification of novel predictive biomarkers for TRAIL-related cancer therapies in future.


Assuntos
Neoplasias , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/metabolismo , Glicoesfingolipídeos/farmacologia , Humanos , Ligantes , Glicoproteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
16.
Bioinformatics ; 38(18): 4330-4336, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35924984

RESUMO

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating individual cells remains warranted. RESULTS: We present ASURAT, a computational tool for simultaneously performing unsupervised clustering and functional annotation of disease, cell type, biological process and signaling pathway activity for single-cell transcriptomic data, using a correlation graph decomposition for genes in database-derived functional terms. We validated the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mononuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and spatial transcriptome datasets for human small cell lung cancer and pancreatic ductal adenocarcinoma, respectively, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy transcriptomic data. AVAILABILITY AND IMPLEMENTATION: ASURAT is published on Bioconductor (https://doi.org/10.18129/B9.bioc.ASURAT). The codes for analyzing data in this article are available at Github (https://github.com/keita-iida/ASURATBI) and figshare (https://doi.org/10.6084/m9.figshare.19200254.v4). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Transcriptoma , Humanos , Análise de Sequência de RNA , Perfilação da Expressão Gênica , Leucócitos Mononucleares , Software , Análise por Conglomerados
17.
Front Med (Lausanne) ; 9: 982128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035413

RESUMO

Introduction/purpose: The gut-liver axis contributes to disease progression, a rise in infection rate, organ failure and a poor overall outcome in chronic liver diseases (CLD). Monitoring of the gut-liver axis is critical in understanding disease status, but biomarkers have not been elucidated. The aim of this study is to determine the level of serum antibodies against Enterococcus (E.) faecalis in evaluating patients with CLD, including those treated with rifaximin (a minimally absorbed antibiotic), and in patients with alcohol-associated liver disease (ALD). Materials and methods: We enrolled 109 CLD patients (cohort 1), 30 hepatic encephalopathy patients treated with rifaximin (cohort 2), 53 inpatients with ALD undergoing alcohol cessation (cohort 3) and 33 healthy subjects. To assess the consequences of E. faecalis translocation, we developed an assay for the detection of a serum antibody against E. faecalis capsular polysaccharide (E.CPS). Results: Serum E.CPS antibody titer was elevated only in those patients with advanced CLD and ALD. The E.CPS antibody titer was an independent prognostic factor (p < 0.05), while Mac-2 binding protein and albumin-bilirubin score were not independent predictors of survival. The improvement of predictive model in integrated factors was significant [continuous net reclassification index (value 0.699, p < 0.05) and integrated discrimination improvement (value 0.164, p = 0.051)]. Furthermore, rifaximin treatment led to a decrease of serum E.CPS antibody titer resulting in a significantly longer overall rate of survival. Conclusion: The E.CPS antibody titer appears to be a strong predictor of survival in CLD patients. Serum E.CPS levels decrease in CLD patients receiving rifaximin, and may be associated with an overall improvement in rate of survival.

18.
Cancer Sci ; 113(10): 3437-3448, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35848881

RESUMO

Peritoneal dissemination is a predominant pattern of metastasis in patients with advanced ovarian cancer. Despite recent progress in the management strategy, peritoneal dissemination remains a determinant of poor ovarian cancer prognosis. Using various histological types of patient-derived ovarian cancer organoids, the roles of the apicobasal polarity of ovarian cancer cell clusters in peritoneal dissemination were studied. First, it was found that both ovarian cancer tissues and ovarian organoids showed apicobasal polarity, where zonula occludens-1 (ZO-1) and integrin beta 4 (ITGB4) served as markers for apical and basal sides, respectively. The organoids in suspension culture, as a model of cancer cell cluster floating in ascites, showed apical-out/basal-in polarity status, while once embedded in extracellular matrix (ECM), the organoids switched their polarity to apical-in/basal-out. This polarity switch was accompanied by the SRC kinase family (SFK) phosphorylation and was inhibited by SFK inhibitors. SFK inhibitors abrogated the adherence of the organoids onto the ECM-coated plastic surface. When the organoids were seeded on a mesothelial cell layer, they cleared and invaded mesothelial cells. In vivo, dasatinib, an SFK inhibitor, suppressed peritoneal dissemination of ovarian cancer organoids in immunodeficient mice. These results suggest SFK-mediated polarity switching is involved in peritoneal metastasis. Polarity switching would be a potential therapeutic target for suppressing peritoneal dissemination in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Dasatinibe , Feminino , Humanos , Integrinas , Camundongos , Neoplasias Ovarianas/patologia , Plásticos , Quinases da Família src
19.
Cancer Res ; 82(16): 2860-2873, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35696550

RESUMO

In chronic liver diseases (CLD), p53 is constitutively activated in hepatocytes due to various etiologies as viral infection, ethanol exposure, or lipid accumulation. This study was aimed to clarify the significance of p53 activation on the pathophysiology of CLDs. In Kras-mutant liver cancer model, murine double minute 2 (Mdm2), a negative regulator of p53, was specifically deleted in hepatocytes [Alb-Cre KrasLSL-G12D Mdm2fl/fl (LiKM; KrasG12D mutation and Mdm2 loss in the liver)]. Accumulation of p53 and upregulation of its downstream genes were observed in hepatocytes in LiKM mice. LiKM mice showed liver inflammation accompanied by hepatocyte apoptosis, senescence-associated secretory phenotype (SASP), and the emergence of hepatic progenitor cells (HPC). More importantly, Mdm2 deletion promoted non-cell autonomous development of liver tumors. Organoids generated from HPCs harbored tumor-formation ability when subcutaneously inoculated into NOD/Shi-scid/IL2Rγ (null) mice. Treatment with acyclic retinoid suppressed growth of HPCs in vitro and inhibited tumorigenesis in LiKM mice. All of the phenotypes in LiKM mice, including accelerated liver tumorigenesis, were negated by further deletion of p53 in hepatocytes (Alb-Cre KrasLSL-G12D Mdm2fl/fl p53fl/fl). Activation of hepatic p53 was noted in liver biopsy samples obtained from 182 patients with CLD, in comparison with 23 normal liver samples without background liver diseases. In patients with CLD, activity of hepatic p53 was positively correlated with the expression of apoptosis, SASP, HPC-associated genes and tumor incidence in the liver after biopsy. In conclusion, activation of hepatocyte p53 creates a microenvironment prone to tumor formation from HPCs. Optimization of p53 activity in hepatocytes is important to prevent patients with CLD from hepatocarcinogenesis. SIGNIFICANCE: This study reveals that activation of p53 in hepatocytes promotes liver carcinogenesis derived from HPCs, which elucidates a paradoxical aspect of a tumor suppressor p53 and novel mechanism of liver carcinogenesis. See related commentary by Barton and Lozano, p. 2824.


Assuntos
Hepatócitos , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Hepatócitos/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Biomaterials ; 287: 121614, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688027

RESUMO

Three-dimensional scaffolds decellularized from native organs are a promising technique to establish engineered liver grafts and overcome the current shortage of donor organs. However, limited sources of bile duct cells and inappropriate cell distribution in bioengineered liver grafts have hindered their practical application. Organoid technology is anticipated to be an excellent tool for the advancement of regenerative medicine. In the present study, we reconstructed intrahepatic bile ducts in a rat decellularized liver graft by recellularization with liver ductal organoids. Using an ex vivo perfusion culture system, we demonstrated the biliary characteristics of repopulated mouse liver organoids, which maintained bile duct markers and reconstructed biliary tree-like networks with luminal structures. We also established a method for the co-recellularization with engineered bile ducts and primary hepatocytes, revealing the appropriate cell distribution to mimic the native liver. We then utilized this model in human organoids to demonstrate the reconstructed bile ducts. Our results show that liver ductal organoids are a potential cell source for bile ducts from bioengineered liver grafts using three-dimensional scaffolds.


Assuntos
Sistema Biliar , Camundongos , Ratos , Animais , Humanos , Ductos Biliares Intra-Hepáticos , Ductos Biliares/cirurgia , Fígado , Organoides , Alicerces Teciduais/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA