Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci China Life Sci ; 67(10): 2132-2148, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39037697

RESUMO

The TET family is well known for active DNA demethylation and plays important roles in regulating transcription, the epigenome and development. Nevertheless, previous studies using knockdown (KD) or knockout (KO) models to investigate the function of TET have faced challenges in distinguishing its enzymatic and nonenzymatic roles, as well as compensatory effects among TET family members, which has made the understanding of the enzymatic role of TET not accurate enough. To solve this problem, we successfully generated mice catalytically inactive for specific Tet members (Tetm/m). We observed that, compared with the reported KO mice, mutant mice exhibited distinct developmental defects, including growth retardation, sex imbalance, infertility, and perinatal lethality. Notably, Tetm/m mouse embryonic stem cells (mESCs) were successfully established but entered an impaired developmental program, demonstrating extended pluripotency and defects in ectodermal differentiation caused by abnormal DNA methylation. Intriguingly, Tet3, traditionally considered less critical for mESCs due to its lower expression level, had a significant impact on the global hydroxymethylation, gene expression, and differentiation potential of mESCs. Notably, there were common regulatory regions between Tet1 and Tet3 in pluripotency regulation. In summary, our study provides a more accurate reference for the functional mechanism of Tet hydroxymethylase activity in mouse development and ESC pluripotency regulation.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Células-Tronco Embrionárias Murinas , Proteínas Proto-Oncogênicas , Animais , Feminino , Masculino , Camundongos , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética
2.
J Cell Physiol ; 239(8): e31295, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38747637

RESUMO

Critical reprogramming factors resided predominantly in the oocyte or male pronucleus can enhance the efficiency or the quality of induced pluripotent stem cells (iPSCs) induction. However, few reprogramming factors exist in the male pronucleus had been verified. Here, we demonstrated that granulin (Grn), a factor enriched specifically in male pronucleus, can significantly improve the generation of iPSCs from mouse fibroblasts. Grn is highly expressed on Day 1, Day 3, Day 14 of reprogramming induced by four Yamanaka factors and functions at the initial stage of reprogramming. Transcriptome analysis indicates that Grn can promote the expression of lysosome-related genes, while inhibit the expression of genes involved in DNA replication and cell cycle at the early reprogramming stage. Further verification determined that Grn suppressed cell proliferation due to the arrest of cell cycle at G2/M phase. Moreover, ectopic Grn can enhance the lysosomes abundance and rescue the efficiency reduction of reprogramming resulted from lysosomal protease inhibition. Taken together, we conclude that Grn serves as an activator for somatic cell reprogramming through mitigating cell hyperproliferation and promoting the function of lysosomes.


Assuntos
Proliferação de Células , Reprogramação Celular , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Lisossomos , Animais , Lisossomos/metabolismo , Reprogramação Celular/genética , Masculino , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Granulinas , Progranulinas/metabolismo , Progranulinas/genética , Núcleo Celular/metabolismo
3.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574734

RESUMO

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Assuntos
Implantação do Embrião , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Fatores de Transcrição , Animais , Feminino , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Implantação do Embrião/genética , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tretinoína/metabolismo
4.
Cell Rep ; 43(5): 114136, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38643480

RESUMO

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.


Assuntos
Fator de Transcrição CDX2 , Linhagem da Célula , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Animais , Cromatina/metabolismo , Camundongos , Linhagem da Célula/genética , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição CDX2/metabolismo , Fator de Transcrição CDX2/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Blastocisto/metabolismo , Blastocisto/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Histonas/metabolismo , Diferenciação Celular/genética , Ectoderma/metabolismo , Ectoderma/citologia , Desenvolvimento Embrionário/genética
5.
Genes Dev ; 38(3-4): 168-188, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38479840

RESUMO

CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.


Assuntos
Cromatina , Desenvolvimento Embrionário , Animais , Camundongos , Sítios de Ligação , Blastocisto/metabolismo , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Mamíferos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Zigoto/metabolismo
6.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438896

RESUMO

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Humanos , Feminino , Animais , Camundongos , Idoso , Insuficiência Ovariana Primária/terapia , Oócitos , Células-Tronco , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
7.
Sci China Life Sci ; 67(5): 958-969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305985

RESUMO

Vertebrate life begins with fertilization, and then the zygote genome is activated after transient silencing, a process termed zygotic genome activation (ZGA). Despite its fundamental role in totipotency and the initiation of life, the precise mechanism underlying ZGA initiation remains unclear. The existence of minor ZGA implies the possible critical role of noncoding RNAs in the initiation of ZGA. Here, we delineate the expression profile of long noncoding RNAs (lncRNAs) in early mouse embryonic development and elucidate their critical role in minor ZGA. Compared with protein-coding genes (PCGs), lncRNAs exhibit a stronger correlation with minor ZGA. Distinct H3K9me3 profiles can be observed between lncRNA genes and PCGs, and the enrichment of H3K9me3 before ZGA might explain the suspended expression of major ZGA-related PCGs despite possessing PolII pre-configuration. Furthermore, we identified the presence of PolII-enriched MuERV-L around the transcriptional start site of minor ZGA-related lncRNAs, and these repeats are responsible for the activation of minor ZGA-related lncRNAs and subsequent embryo development. Our study suggests that MuERV-L mediates minor ZGA lncRNA activation as a critical driver between epigenetic reprogramming triggered by fertilization and the embryo developmental program, thus providing clues for understanding the regulatory mechanism of totipotency and establishing bona fide totipotent stem cells.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Longo não Codificante , Zigoto , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Zigoto/metabolismo , Camundongos , Desenvolvimento Embrionário/genética , Genoma/genética , Feminino , Histonas/metabolismo , Epigênese Genética , Embrião de Mamíferos/metabolismo
8.
Natl Sci Rev ; 10(9): nwad173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37593113

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells into totipotency. Although pre-implantation development of SCNT embryos has greatly improved, most SCNT blastocysts are still arrested at the peri-implantation stage, and the underlying mechanism remains elusive. Here, we develop a 3D in vitro culture system for SCNT peri-implantation embryos and discover that persistent Wnt signals block the naïve-to-primed pluripotency transition of epiblasts with aberrant H3K27me3 occupancy, which in turn leads to defects in epiblast transformation events and subsequent implantation failure. Strikingly, manipulating Wnt signals can attenuate the pluripotency transition and H3K27me3 deposition defects in epiblasts and achieve up to a 9-fold increase in cloning efficiency. Finally, single-cell RNA-seq analysis reveals that Wnt inhibition markedly enhances the lineage developmental trajectories of SCNT blastocysts during peri-implantation development. Overall, these findings reveal diminished potentials of SCNT blastocysts for lineage specification and validate a critical peri-implantation barrier for SCNT embryos.

9.
Nat Commun ; 14(1): 4807, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558707

RESUMO

Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.


Assuntos
Histonas , Zigoto , Histonas/genética , Técnicas de Transferência Nuclear , Desenvolvimento Embrionário/genética , Blastocisto , Embrião de Mamíferos , Reprogramação Celular/genética
10.
Cell Mol Life Sci ; 80(8): 218, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470863

RESUMO

BACKGROUND: Abundantly expressed factors in the oocyte cytoplasm can remarkably reprogram terminally differentiated germ cells or somatic cells into totipotent state within a short time. However, the mechanism of the different factors underlying the reprogramming process remains uncertain. METHODS: On the basis of Yamanaka factors OSKM induction method, MEF cells were induced and reprogrammed into iPSCs under conditions of the oocyte-derived factor Wdr82 overexpression and/or knockdown, so as to assess the reprogramming efficiency. Meanwhile, the cellular metabolism was monitored and evaluated during the reprogramming process. The plurpotency of the generated iPSCs was confirmed via pluripotent gene expression detection, embryoid body differentiation and chimeric mouse experiment. RESULTS: Here, we show that the oocyte-derived factor Wdr82 promotes the efficiency of MEF reprogramming into iPSCs to a greater degree than the Yamanaka factors OSKM. The Wdr82-expressing iPSC line showed pluripotency to differentiate and transmit genetic material to chimeric offsprings. In contrast, the knocking down of Wdr82 can significantly reduce the efficiency of somatic cell reprogramming. We further demonstrate that the significant suppression of oxidative phosphorylation in mitochondria underlies the molecular mechanism by which Wdr82 promotes the efficiency of somatic cell reprogramming. Our study suggests a link between mitochondrial energy metabolism remodeling and cell fate transition or stem cell function maintenance, which might shed light on the embryonic development and stem cell biology.


Assuntos
Proteínas Cromossômicas não Histona , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Glicólise/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Repetições WD40 , Proteínas Cromossômicas não Histona/genética
11.
Nat Commun ; 14(1): 1838, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012254

RESUMO

Farrerol, a natural flavanone, promotes homologous recombination (HR) repair to improve genome-editing efficiency, but the specific protein that farrerol directly targets to regulate HR repair and the underlying molecular mechanisms have not been determined. Here, we find that the deubiquitinase UCHL3 is the direct target of farrerol. Mechanistically, farrerol enhanced the deubiquitinase activity of UCHL3 to promote RAD51 deubiquitination, thereby improving HR repair. Importantly, we find that embryos of somatic cell nuclear transfer (SCNT) exhibited defective HR repair, increased genomic instability and aneuploidy, and that the farrerol treatment post nuclear transfer enhances HR repair, restores transcriptional and epigenetic network, and promotes SCNT embryo development. Ablating UCHL3 significantly attenuates farrerol-mediated stimulation in HR and SCNT embryo development. In summary, we identify farrerol as an activator of the deubiquitinase UCHL3, highlighted the importance of HR and epigenetic changes in SCNT reprogramming and provide a feasible method to promote SCNT efficiency.


Assuntos
Reparo do DNA , Técnicas de Transferência Nuclear , Reprogramação Celular/genética , Enzimas Desubiquitinantes/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Epigênese Genética , Animais
12.
Protein Cell ; 14(4): 262-278, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37084236

RESUMO

Self-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that the "trophectoderm (TE)-like structure" of EPS-blastoids was primarily composed of primitive endoderm (PrE)-related cells instead of TE-related cells. We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure. Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation. Furthermore, we demonstrated that blastocyst-like structures reconstituted by combining the EPS-derived bilineage embryo-like structure (BLES) with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses. In summary, our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.


Assuntos
Blastocisto , Tetraploidia , Gravidez , Feminino , Animais , Camundongos , Embrião de Mamíferos , Diferenciação Celular , Desenvolvimento Embrionário
13.
Nat Commun ; 14(1): 957, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810573

RESUMO

Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.


Assuntos
Núcleo Celular , Histonas , Animais , Masculino , Histonas/metabolismo , Núcleo Celular/metabolismo , Desenvolvimento Embrionário/genética , Zigoto/metabolismo , Estabilidade de RNA , RNA/metabolismo , Mamíferos/genética
15.
Stem Cell Reports ; 17(8): 1799-1809, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947961

RESUMO

The METTL3-METTL14 complex, the "writer" of N6-methyladenosine (m6A), plays an important role in many biological processes. Previous studies have shown that Mettl3 overexpression can increase the level of m6A and promote somatic cell reprogramming. Here, we demonstrate that Mettl14, another component of the methyltransferase complex, can significantly enhance the generation of induced pluripotent stem cells (iPSCs) in an m6A-independent manner. In cooperation with Oct4, Sox2, Klf4, and c-Myc, overexpressed Mettl14 transiently promoted senescence-associated secretory phenotype (SASP) gene expression in non-reprogrammed cells in the late stage of reprogramming. Subsequently, we demonstrated that interleukin-6 (IL-6), a component of the SASP, significantly enhanced somatic cell reprogramming. In contrast, blocking the SASP using a senolytic agent or a nuclear factor κB (NF-κB) inhibitor impaired the effect of Mettl14 on reprogramming. Our results highlight the m6A-independent function of Mettl14 in reprogramming and provide new insight into the interplay between senescence and reprogramming in vitro.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fenótipo Secretor Associado à Senescência
16.
Stem Cell Reports ; 17(7): 1730-1742, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750045

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.


Assuntos
Histonas , Nucleossomos , Animais , Blastocisto , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Histonas/metabolismo , Camundongos , Técnicas de Transferência Nuclear , Nucleossomos/metabolismo
17.
Nat Cell Biol ; 24(6): 917-927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606490

RESUMO

N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals. However, the landscape and function of m6A in early embryos remain unclear owing to limited materials. Here we developed a method of ultralow-input m6A RNA immunoprecipitation followed by sequencing to reveal the transcriptome-wide m6A landscape in mouse oocytes and early embryos and found unique enrichment and dynamics of m6A RNA modifications on maternal and zygotic RNAs, including the transcripts of transposable elements MTA and MERVL. Notably, we found that the maternal protein KIAA1429, a component of the m6A methyltransferase complex, was essential for m6A deposition on maternal mRNAs that undergo decay after zygotic genome activation and MTA transcripts to maintain their stability in oocytes. Interestingly, m6A methyltransferases, especially METTL3, deposited m6A on mRNAs transcribed during zygotic genome activation and ensured their decay after the two-cell stage, including Zscan4 and MERVL. Together, our findings uncover the essential functions of m6A in specific contexts during the maternal-to-zygotic transition, namely ensuring the stability of mRNAs in oocytes and the decay of two-cell-specific transcripts after fertilization.


Assuntos
Desenvolvimento Embrionário , RNA , Animais , Camundongos , Adenosina/análogos & derivados , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo , Oócitos/metabolismo , RNA/genética , RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zigoto/metabolismo
18.
Science ; 376(6596): 968-973, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35511947

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on mammalian messenger RNA. It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein FTO. Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain elusive. Here, we show that FTO mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA in mouse embryonic stem cells (mESCs), regulating LINE1 RNA abundance and the local chromatin state, which in turn modulates the transcription of LINE1-containing genes. FTO-mediated LINE1 RNA m6A demethylation also plays regulatory roles in shaping chromatin state and gene expression during mouse oocyte and embryonic development. Our results suggest broad effects of LINE1 RNA m6A demethylation by FTO in mammals.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Embrionárias Murinas , Oócitos , RNA Mensageiro , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Cromatina/metabolismo , Desmetilação , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Oócitos/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Cell Rep ; 39(5): 110784, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508139

RESUMO

Assisted reproductive technology has been widely applied in the treatment of human infertility. However, accumulating evidence indicates that in vitro fertilization (IVF) is associated with a low pregnancy rate, placental defects, and metabolic diseases in offspring. Here, we find that IVF manipulation notably disrupts extraembryonic tissue-specific gene expression, and 334 epiblast (Epi)-specific genes and 24 Epi-specific transcription factors are abnormally expressed in extraembryonic ectoderm (ExE) of IVF embryos at embryonic day 7.5. Combined histone modification analysis reveals that aberrant H3K4me3 modification at the Epi active promoters results in increased expression of these genes in ExE. Importantly, we demonstrate that knockdown of the H3K4me3-recruited regulator Kmt2e, which is highly expressed in IVF embryos, greatly improves the development of IVF embryos and reduces abnormal gene expression in ExE. Our study therefore identifies that abnormal H3K4me3 modification in extraembryonic tissue is a major cause of implantation failure and abnormal placental development of IVF embryos.


Assuntos
Fertilização in vitro , Placenta , Animais , Feminino , Camadas Germinativas , Histonas , Camundongos , Placenta/metabolismo , Gravidez , Técnicas de Reprodução Assistida
20.
Cell Res ; 32(9): 801-813, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35428874

RESUMO

Chromatin remodeling is essential for epigenome reprogramming after fertilization. However, the underlying mechanisms of chromatin remodeling remain to be explored. Here, we investigated the dynamic changes in nucleosome occupancy and positioning in pronucleus-stage zygotes using ultra low-input MNase-seq. We observed distinct features of inheritance and reconstruction of nucleosome positioning in both paternal and maternal genomes. Genome-wide de novo nucleosome occupancy in the paternal genome was observed as early as 1 h after the injection of sperm into ooplasm. The nucleosome positioning pattern was continually rebuilt to form nucleosome-depleted regions (NDRs) at promoters and transcription factor (TF) binding sites with differential dynamics in paternal and maternal genomes. NDRs formed more quickly on the promoters of genes involved in zygotic genome activation (ZGA), and this formation is closely linked to histone acetylation, but not transcription elongation or DNA replication. Importantly, we found that NDR establishment on the binding motifs of specific TFs might be associated with their potential pioneer functions in ZGA. Further investigations suggested that the predicted factors MLX and RFX1 played important roles in regulating minor and major ZGA, respectively. Our data not only elucidate the nucleosome positioning dynamics in both male and female pronuclei following fertilization, but also provide an efficient method for identifying key transcription regulators during development.


Assuntos
Nucleossomos , Zigoto , Animais , Montagem e Desmontagem da Cromatina , Feminino , Fertilização/genética , Masculino , Camundongos , Nucleossomos/metabolismo , Fator Regulador X1/genética , Fator Regulador X1/metabolismo , Sêmen/metabolismo , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA