Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Epidemiol ; 173: 111456, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002765

RESUMO

OBJECTIVES: We present the 'COVID-19 evidence ecosystem' (CEOsys) as a German network to inform pandemic management and to support clinical and public health decision-making. We discuss challenges faced when organizing the ecosystem and derive lessons learned for similar networks acting during pandemics or health-related crises. STUDY DESIGN AND SETTING: Bringing together 18 university hospitals and additional institutions, CEOsys key activities included research prioritization, conducting living systematic reviews (LSRs), supporting evidence-based (living) guidelines, knowledge translation (KT), detecting research gaps, and deriving recommendations, backed by technical infrastructure and capacity building. RESULTS: CEOsys rapidly produced 31 high-quality evidence syntheses and supported three living guidelines on COVID-19-related topics, while also developing methodological procedures. Challenges included CEOsys' late initiation in relation to the pandemic outbreak, the delayed prioritization of research questions, the continuously evolving COVID-19-related evidence, and establishing a technical infrastructure. Methodological-clinical tandems, the cooperation with national guideline groups and international collaborations were key for efficiency. CONCLUSION: CEOsys provided a proof-of-concept for a functioning evidence ecosystem at the national level. Lessons learned include that similar networks should, among others, involve methodological and clinical key stakeholders early on, aim for (inter)national collaborations, and systematically evaluate their value. We particularly call for a sustainable network.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , Alemanha , Medicina Baseada em Evidências , SARS-CoV-2 , Guias de Prática Clínica como Assunto
2.
J Clin Epidemiol ; 170: 111344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579978

RESUMO

BACKGROUND: Prognostic models incorporate multiple prognostic factors to estimate the likelihood of future events for individual patients based on their prognostic factor values. Evaluating these models crucially involves conducting studies to assess their predictive performance, like discrimination. Systematic reviews and meta-analyses of these validation studies play an essential role in selecting models for clinical practice. METHODS: In this paper, we outline 3 thresholds to determine the target for certainty rating in the discrimination of prognostic models, as observed across a body of validation studies. RESULTS AND CONCLUSION: We propose 3 thresholds when rating the certainty of evidence about a prognostic model's discrimination. The first threshold amounts to rating certainty in the model's ability to classify better than random chance. The other 2 approaches involve setting thresholds informed by other mechanisms for classification: clinician intuition or an alternative prognostic model developed for the same disease area and outcome. The choice of threshold will vary based on the context. Instead of relying on arbitrary discrimination cut-offs, our approach positions the observed discrimination within an informed spectrum, potentially aiding decisions about a prognostic model's practical utility.


Assuntos
Estudos de Validação como Assunto , Humanos , Prognóstico , Abordagem GRADE , Modelos Estatísticos , Reprodutibilidade dos Testes
3.
J Clin Epidemiol ; 159: 174-189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263516

RESUMO

OBJECTIVES: Previous findings indicate limited reporting of systematic reviews with meta-analyses of time-to-event (TTE) outcomes. We assessed corresponding available information in trial publications included in such meta-analyses. STUDY DESIGN AND SETTING: We extracted data from all randomized trials in pairwise, hazard ratio (HR)-based meta-analyses of primary outcomes and overall survival of 50 systematic reviews systematically identified from the Cochrane Database and Core Clinical Journals. Data on methods and characteristics relevant for TTE analysis of reviews, trials, and outcomes were extracted. RESULTS: Meta-analyses included 235 trials with 315 trial analyses. Most prominently assessed was overall survival (91%). Definitions (61%), censoring reasons (41%), and follow-up specifications (56%) for trial outcomes were often missing. Available TTE data per trial were most frequently survival curves (83%), log-rank P values (76%), and HRs (72%). When trial TTE data recalculation was reported, reviews mostly specified HRs or P values (each 5%). Reviews primarily included intention-to-treat analyses (64%) and analyses not adjusted for covariates (25%). Except for missing outcome data, TTE-relevant trial characteristics, for example, informative censoring, treatment switching, and proportional hazards, were sporadically addressed in trial publications. Reporting limitations in trial publications translate to the review level. CONCLUSION: TTE (meta)-analyses, in trial and review publications, need clear reporting standards.


Assuntos
Revisões Sistemáticas como Assunto , Humanos , Coleta de Dados
4.
Cochrane Database Syst Rev ; 5: CD013600, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162745

RESUMO

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


Assuntos
COVID-19 , Viroses , Humanos , COVID-19/terapia , SARS-CoV-2 , Soroterapia para COVID-19 , Imunoglobulinas
5.
J Antimicrob Chemother ; 78(7): 1586-1598, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37170886

RESUMO

BACKGROUND: The role of molnupiravir for coronavirus disease 2019 (COVID-19) treatment is unclear. METHODS: We conducted a systematic review until 1 November 2022 searching for randomized controlled trials (RCTs) involving COVID-19 patients comparing molnupiravir [±standard of care (SoC)] versus SoC and/or placebo. Data were pooled in random-effects meta-analyses. Certainty of evidence was assessed according to the Grading of Recommendations, Assessment, Development and Evaluations approach. RESULTS: Nine RCTs were identified, eight investigated outpatients (29 254 participants) and one inpatients (304 participants). Compared with placebo/SoC, molnupiravir does not reduce mortality [risk ratio (RR) 0.27, 95% CI 0.07-1.02, high-certainty evidence] and probably does not reduce the risk for 'hospitalization or death' (RR 0.81, 95% CI 0.55-1.20, moderate-certainty evidence) by Day 28 in COVID-19 outpatients. We are uncertain whether molnupiravir increases symptom resolution by Day 14 (RR 1.20, 95% CI 1.02-1.41, very-low-certainty evidence) but it may make no difference by Day 28 (RR 1.05, 95% CI 0.92-1.19, low-certainty evidence). In inpatients, molnupiravir may increase mortality by Day 28 compared with placebo (RR 3.78, 95% CI 0.50-28.82, low-certainty evidence). There is little to no difference in serious adverse and adverse events during the study period in COVID-19 inpatients/outpatients treated with molnupiravir compared with placebo/SoC (moderate- to high-certainty evidence). CONCLUSIONS: In a predominantly immunized population of COVID-19 outpatients, molnupiravir has no effect on mortality, probably none on 'hospitalization or death' and effects on symptom resolution are uncertain. Molnupiravir was safe during the study period in outpatients although a potential increase in inpatient mortality requires careful monitoring in ongoing clinical research. Our analysis does not support routine use of molnupiravir for COVID-19 treatment in immunocompetent individuals.


Assuntos
COVID-19 , Humanos , SARS-CoV-2
6.
J Clin Epidemiol ; 159: 40-48, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146659

RESUMO

OBJECTIVES: This Grading of Recommendations Assessment, Development and Evaluation (GRADE) concept article offers systematic reviewers, guideline authors, and other users of evidence assistance in addressing randomized trial situations in which interventions or comparators differ from those in the target people, interventions, comparators, and outcomes. To clarify what GRADE considers under indirectness of interventions and comparators, we focus on a particular example: when comparator arm participants receive some or all aspects of the intervention management strategy (treatment switching). STUDY DESIGN AND SETTING: An interdisciplinary panel of the GRADE working group members developed this concept article through an iterative review of examples in multiple teleconferences, small group sessions, and e-mail correspondence. After presentation at a GRADE working group meeting in November 2022, attendees approved the final concept paper, which we support with examples from systematic reviews and individual trials. RESULTS: In the presence of safeguards against risk of bias, trials provide unbiased estimates of the effect of an intervention on the people as enrolled, the interventions as implemented, the comparators as implemented, and the outcomes as measured. Within the GRADE framework, differences in the people, interventions, comparators, and outcomes elements between the review or guideline recommendation targets and the trials as implemented constitute issues of indirectness. The intervention or comparator group management strategy as implemented, when it differs from the target comparator, constitutes one potential source of indirectness: Indirectness of interventions and comparators-comparator group receipt of the intervention constitutes a specific subcategory of said indirectness. The proportion of comparator arm participants that received the intervention and the apparent magnitude of effect bear on whether one should rate down, and if one does, to what extent. CONCLUSION: Treatment switching and other differences between review or guideline recommendation target interventions and comparators vs. interventions and comparators as implemented in otherwise relevant trials are best considered issues of indirectness.


Assuntos
Viés , Medicina Baseada em Evidências , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos
7.
Vaccines (Basel) ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112775

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) who have a highly impaired immune response are in need of intensified and safe vaccination strategies to achieve seroconversion and prevent severe disease. METHODS: We searched the Web of Science Core Collection, the Cochrane COVID-19 Study Register and the WHO COVID-19 global literature on coronavirus disease from January 2020 to 22 July 2022 for prospective studies that assessed immunogenicity and efficacy after three or more SARS-CoV-2 vaccine doses. RESULTS: In 37 studies on 3429 patients, de novo seroconversion after three and four vaccine doses ranged from 32 to 60% and 25 to 37%. Variant-specific neutralization was 59 to 70% for Delta and 12 to 52% for Omicron. Severe disease after infection was rarely reported but all concerned KTRs lacked immune responses after vaccination. Studies investigating the clinical course of COVID-19 found remarkably higher rates of severe disease than in the general population. Serious adverse events and acute graft rejections were very rare. Substantial heterogeneity between the studies limited their comparability and summary. CONCLUSION: Additional SARS-CoV-2 vaccine doses are potent and safe in general terms as well as regarding transplant-specific outcomes whilst the Omicron wave remains a significant threat to KTRs without adequate immune responses.

8.
BMC Health Serv Res ; 23(1): 347, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024867

RESUMO

IMPORTANCE: Guideline recommendations do not necessarily translate into changes in clinical practice behaviour or better patient outcomes. OBJECTIVE: This systematic review aims to identify recent clinical guideline implementation strategies in oncology and to determine their effect primarily on patient-relevant outcomes and secondarily on healthcare professionals' adherence. METHODS: A systematic search of five electronic databases (PubMed, Web of Science, GIN, CENTRAL, CINAHL) was conducted on 16 december 2022. Randomized controlled trials (RCTs) and non-randomized studies of interventions (NRSIs) assessing the effectiveness of guideline implementation strategies on patient-relevant outcomes (overall survival, quality of life, adverse events) and healthcare professionals' adherence outcomes (screening, referral, prescribing, attitudes, knowledge) in the oncological setting were targeted. The Cochrane risk-of-bias tool and the ROBINS-I tool were used for assessing the risk of bias. Certainty in the evidence was evaluated according to GRADE recommendations. This review was prospectively registered in the International Prospective Register of Systematic Reviews (PROSPERO) with the identification number CRD42021268593. FINDINGS: Of 1326 records identified, nine studies, five cluster RCTs and four controlled before-and after studies, were included in the narrative synthesis. All nine studies assess the effect of multi-component interventions in 3577 cancer patients and more than 450 oncologists, nurses and medical staff. PATIENT-LEVEL: Educational meetings combined with materials, opinion leaders, audit and feedback, a tailored intervention or academic detailing may have little to no effect on overall survival, quality of life and adverse events of cancer patients compared to no intervention, however, the evidence is either uncertain or very uncertain. PROVIDER-LEVEL: Multi-component interventions may increase or slightly increase guideline adherence regarding screening, referral and prescribing behaviour of healthcare professionals according to guidelines, but the certainty in evidence is low. The interventions may have little to no effect on attitudes and knowledge of healthcare professionals, still, the evidence is very uncertain. CONCLUSIONS AND RELEVANCE: Knowledge and skill accumulation through team-oriented or online educational training and dissemination of materials embedded in multi-component interventions seem to be the most frequently researched guideline implementation strategies in oncology recently. This systematic review provides an overview of recent guideline implementation strategies in oncology, encourages future implementation research in this area and informs policymakers and professional organisations on the development and adoption of implementation strategies.


Assuntos
Fidelidade a Diretrizes , Encaminhamento e Consulta , Humanos , Oncologia
9.
Cochrane Database Syst Rev ; 2: CD013600, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36734509

RESUMO

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


ANTECEDENTES: El plasma de convaleciente podría reducir la mortalidad en pacientes con enfermedades respiratorias víricas, y se está investigando como posible tratamiento para la enfermedad por coronavirus 2019 (covid­19). Se requiere un profundo conocimiento del conjunto de evidencia actual sobre los beneficios y riesgos de esta intervención. OBJETIVOS: Evaluar la efectividad y seguridad de la transfusión de plasma de convaleciente en el tratamiento de las personas con covid­19; y mantener la vigencia de la evidencia con un enfoque de revisión sistemática continua. MÉTODOS DE BÚSQUEDA: Para identificar estudios en curso y completados, se realizaron búsquedas en la base de datos COVID­19 de la OMS: literatura global sobre la enfermedad por coronavirus, MEDLINE, Embase, el Registro Cochrane de Estudios de covid­19 y la Plataforma COVID­19 L*OVE de Epistemonikos. Se realizaron búsquedas mensuales hasta el 3 de marzo de 2022. CRITERIOS DE SELECCIÓN: Se incluyeron ensayos controlados aleatorizados (ECA) que evaluaron el plasma de convaleciente para la covid­19, independientemente de la gravedad de la enfermedad, la edad, el sexo o el origen étnico. Se excluyeron los estudios que incluyeron poblaciones con otras enfermedades por coronavirus, como el síndrome respiratorio agudo grave (SARS) o el síndrome respiratorio de Oriente Medio (MERS), así como los estudios que evaluaron la inmunoglobulina estándar. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Se siguió la metodología estándar de Cochrane. Para evaluar el sesgo en los estudios incluidos se utilizó la herramienta RoB 2. Se utilizó el método GRADE para evaluar la certeza de la evidencia para los siguientes desenlaces: mortalidad por todas las causas hasta el día 28, empeoramiento y mejoría del estado clínico (para personas con enfermedad moderada a grave), ingreso hospitalario o muerte, resolución de los síntomas de covid­19 (para personas con enfermedad leve), calidad de vida, eventos adversos de grado 3 o 4 y eventos adversos graves. RESULTADOS PRINCIPALES: En esta cuarta versión actualizada de la revisión se incluyeron 33 ECA con 24 861 participantes, de los cuales 11 432 recibieron plasma de convaleciente. De ellos, 9 estudios son unicéntricos y 24 multicéntricos. Se realizaron 14 estudios en América, 8 en Europa, 3 en el Sudeste Asiático, 2 en África, 2 en el Pacífico occidental, 3 en el Mediterráneo oriental y 1 en varias regiones. Se identificaron otros 49 estudios en curso que evaluaron el plasma de convaleciente, y 33 estudios que informaban de que se habían completado. Personas con un diagnóstico confirmado de covid­19 y enfermedad de moderada a grave El uso de plasma de convaleciente se investigó en 29 ECA con 22 728 participantes con enfermedad moderada a grave. En 23 ECA con 22 020 participantes se comparó el plasma de convaleciente con el placebo o la atención habitual sola, en 5 se comparó con plasma estándar y en 1, con inmunoglobulina humana. Se evalúan subgrupos sobre detección de anticuerpos, aparición de síntomas, grupos de ingresos de países y varias comorbilidades en el texto completo. Plasma de convaleciente versus placebo o atención habitual sola El plasma de convaleciente no reduce la mortalidad por todas las causas hasta el día 28 (razón de riesgos [RR] 0,98; intervalo de confianza [IC] del 95%: 0,92 a 1,03; 220 por cada 1000; 21 ECA, 19 021 participantes; evidencia de certeza alta). Tiene poca o ninguna repercusión en la necesidad de ventilación mecánica invasiva o la muerte (RR 1,03; IC del 95%: 0,97 a 1,11; 296 por cada 1000; seis ECA, 14 477 participantes; evidencia de certeza alta) y no tiene ningún efecto en si los participantes reciben el alta hospitalaria (RR 1,00; IC de 95%: 0,97 a 1,02; 665 por cada 1000; seis ECA, 12 721 participantes; evidencia de certeza alta). El plasma de convaleciente podría tener poca o ninguna repercusión en la calidad de vida (DM 1,00; IC del 95%: ­2,14 a 4,14; un ECA, 483 participantes; evidencia de certeza baja). El plasma de convaleciente podría tener poco o ningún efecto en el riesgo de eventos adversos de grado 3 y 4 (RR 1,17; IC del 95%: 0,96 a 1,42; 212 por cada 1000; seis ECA, 2392 participantes; evidencia de certeza baja). Es probable que tenga poco o ningún efecto sobre el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,91 a 1,44; 135 por cada 1000; seis ECA, 3901 participantes; evidencia de certeza moderada). Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce o aumenta la mortalidad por cualquier causa hasta el día 28 (RR 0,73; IC del 95%: 0,45 a 1,19; 129 por cada 1000; cuatro ECA, 484 participantes; evidencia de certeza muy baja). No se sabe si el plasma de convaleciente reduce o aumenta la necesidad de ventilación mecánica invasiva o la muerte (RR 5,59; IC del 95%: 0,29 a 108,38; 311 por cada 1000; un estudio, 34 participantes; evidencia de certeza muy baja) ni si reduce o aumenta el riesgo de eventos adversos graves (RR 0,80; IC 95%: 0,55 a 1,15; 236 por cada 1000; tres ECA, 327 participantes; evidencia de certeza muy baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus inmunoglobulina humana El plasma de convaleciente podría tener poco o ningún efecto sobre la mortalidad por cualquier causa hasta el día 28 (RR 1,07; IC del 95%: 0,76 a 1,50; 464 por cada 1000; un estudio, 190 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Personas con un diagnóstico confirmado de infección por SARS­CoV­2 y enfermedad leve Se identificaron dos ECA, con 536 participantes, que compararon el plasma de convaleciente con placebo o atención habitual sola y dos ECA, con 1597 participantes con enfermedad leve, que compararon el plasma de convaleciente con plasma estándar. Plasma de convaleciente versus placebo o atención habitual sola No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (odds ratio [OR] 0,36; IC del 95%: 0,09 a 1,46; 8 por cada 1000; dos ECA, 536 participantes; evidencia de certeza muy baja). Podría tener poco o ningún efecto en el ingreso hospitalario o la muerte a los 28 días (RR 1,05; IC del 95%: 0,60 a 1,84; 117 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el tiempo hasta la resolución de los síntomas de covid­19 (cociente de riesgos instantáneos [CRI] 1,05; IC del 95%: 0,85 a 1,30; 483 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el riesgo de eventos adversos de grados 3 y 4 (RR 1,29; IC del 95%: 0,75 a 2,19; 144 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja) y en el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,66 a 1,94; 133 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (OR 0,30; IC del 95%: 0,05 a 1,75; 2 por cada 1000; dos ECA, 1597 participantes; evidencia de certeza muy baja). Es probable que reduzca el ingreso hospitalario o la muerte a los 28 días (RR 0,49; IC del 95%: 0,31 a 0,75; 36 por cada 1000; dos ECA, 1595 participantes; evidencia de certeza moderada). El plasma de convaleciente podría tener poco o ningún efecto sobre la resolución inicial de los síntomas hasta el día 28 (RR 1,12; IC del 95%: 0,98 a 1,27; un ECA, 416 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Esta es una revisión sistemática continua. Cada mes se busca nueva evidencia y se actualiza la revisión cuando se identifica evidencia nueva relevante. CONCLUSIONES DE LOS AUTORES: Para la comparación del plasma de convaleciente versus placebo o la atención habitual sola, existe evidencia de certeza alta de que el plasma de convaleciente para personas con enfermedad moderada a grave no reduce la mortalidad y tiene poco o ningún efecto en la mejoría o el empeoramiento clínico. Es probable que tenga poco o ningún efecto en los eventos adversos graves. Para las personas con enfermedad leve, existe evidencia de certeza baja para los desenlaces principales. Hay 49 estudios en curso y 33 estudios que declaran estar completados en un registro de ensayos. La publicación de los estudios en curso podría resolver algunas de las incertidumbres en torno al tratamiento con plasma de convaleciente para personas con enfermedad asintomática o leve.


Assuntos
COVID-19 , Viroses , Humanos , COVID-19/terapia , Soroterapia para COVID-19 , Imunoglobulinas , SARS-CoV-2
10.
Cancers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497488

RESUMO

BACKGROUND: Patient-reported outcomes (PROs) are becoming increasingly important in supporting clinical outcomes in clinical trials. In multiple myeloma (MM), PRO measurement is useful to reveal how treatment affects physical, psychosocial, and functional behaviour as well as symptoms and treatment-related adverse events to evaluate the benefit-risk ratio of a particular drug or drug combination. We report the types of PRO instruments used in MM, the frequency in which they are utilised in randomised controlled trials (RCTs), and the consistency of their reporting. METHODS: The European Hematology Association (EHA) supports the development of guidelines for the use of PROs in adult patients with haematological malignancies. The first step is the present systematic review of the literature. MEDLINE and CENTRAL were searched for RCTs in MM between 2015 and 2020. Study design, characteristics of MM and its treatment, the primary outcomes, and the types of PRO instrument(s) were extracted using a predefined template. Additionally, in a stepwise approach, it was assessed whether the identified instruments had been validated for multiple myeloma patients, patients with haematological malignancies, or cancer patients. RESULTS: Following screening for RCTs, 283 studies were included for review from 10,707 records retrieved, and 118 of these planned the use of PRO measures. Thirty-eight PRO instruments were reported. The most frequently used instrument (92 studies) was the EORTC QLQ-30. The EORTC-MY20 MM-specific questionnaire was the second most frequently used (50 studies), together with the EQ-5D (50 studies). Only 19 PRO instruments reported were consistent with the trial registry. Furthermore, in 58 publications, the information on PRO instruments differed between the publication and the trial registry. Further, information on PRO in HTA reports was available for 26 studies, of which 18 reports were consistent with the trial registries. Out of the 38 instruments used, six had been validated for patients with multiple myeloma (the most frequently used), six for patients with haematological malignancies, and 10 for cancer patients in general. CONCLUSIONS: The findings indicate that the measurement of PROs in RCTs for MM is underutilised, underreported, and often inconsistent. Guidelines for the appropriate use of PROs in MM are needed to ensure standardisation in selection and reporting. Furthermore, not all PRO instruments identified have been validated for myeloma patients or patients with haematological malignancies. Thus, guidelines for the appropriate use and reporting of PROs are needed in MM to ensure standardisation in the selection and reporting of PROs.

11.
Cochrane Database Syst Rev ; 8: CD015021, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943061

RESUMO

BACKGROUND: High efficacy in terms of protection from severe COVID-19 has been demonstrated for several SARS-CoV-2 vaccines. However, patients with compromised immune status develop a weaker and less stable immune response to vaccination. Strong immune response may not always translate into clinical benefit, therefore it is important to synthesise evidence on modified schemes and types of vaccination in these population subgroups for guiding health decisions. As the literature on COVID-19 vaccines continues to expand, we aimed to scope the literature on multiple subgroups to subsequently decide on the most relevant research questions to be answered by systematic reviews. OBJECTIVES: To provide an overview of the availability of existing literature on immune response and long-term clinical outcomes after COVID-19 vaccination, and to map this evidence according to the examined populations, specific vaccines, immunity parameters, and their way of determining relevant long-term outcomes and the availability of mapping between immune reactivity and relevant outcomes. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, the Web of Science Core Collection, and the World Health Organization COVID-19 Global literature on coronavirus disease on 6 December 2021.  SELECTION CRITERIA: We included studies that published results on immunity outcomes after vaccination with BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, Sputnik V or Sputnik Light, BBIBP-CorV, or CoronaVac on predefined vulnerable subgroups such as people with malignancies, transplant recipients, people undergoing renal replacement therapy, and people with immune disorders, as well as pregnant and breastfeeding women, and children. We included studies if they had at least 100 participants (not considering healthy control groups); we excluded case studies and case series. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate onto an online data extraction form. Data were represented as tables and as online maps to show the frequency of studies for each item. We mapped the data according to study design, country of participant origin, patient comorbidity subgroup, intervention, outcome domains (clinical, safety, immunogenicity), and outcomes.  MAIN RESULTS: Out of 25,452 identified records, 318 studies with a total of more than 5 million participants met our eligibility criteria and were included in the review. Participants were recruited mainly from high-income countries between January 2020 and 31 October 2021 (282/318); the majority of studies included adult participants (297/318).  Haematological malignancies were the most commonly examined comorbidity group (N = 54), followed by solid tumours (N = 47), dialysis (N = 48), kidney transplant (N = 43), and rheumatic diseases (N = 28, 17, and 15 for mixed diseases, multiple sclerosis, and inflammatory bowel disease, respectively). Thirty-one studies included pregnant or breastfeeding women. The most commonly administered vaccine was BNT162b2 (N = 283), followed by mRNA-1273 (N = 153), AZD1222 (N = 66), Ad26.COV2.S (N = 42), BBIBP-CorV (N = 15), CoronaVac (N = 14), and Sputnik V (N = 5; no studies were identified for Sputnik Light). Most studies reported outcomes after regular vaccination scheme.  The majority of studies focused on immunogenicity outcomes, especially seroconversion based on binding antibody measurements and immunoglobulin G (IgG) titres (N = 179 and 175, respectively). Adverse events and serious adverse events were reported in 126 and 54 studies, whilst SARS-CoV-2 infection irrespective of severity was reported in 80 studies. Mortality due to SARS-CoV-2 infection was reported in 36 studies. Please refer to our evidence gap maps for more detailed information. AUTHORS' CONCLUSIONS: Up to 6 December 2021, the majority of studies examined data on mRNA vaccines administered as standard vaccination schemes (two doses approximately four to eight weeks apart) that report on immunogenicity parameters or adverse events. Clinical outcomes were less commonly reported, and if so, were often reported as a secondary outcome observed in seroconversion or immunoglobulin titre studies. As informed by this scoping review, two effectiveness reviews (on haematological malignancies and kidney transplant recipients) are currently being conducted.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Ad26COVS1 , Adulto , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Criança , Feminino , Humanos , Gravidez , SARS-CoV-2 , Vacinação
12.
Ann Intern Med ; 175(9): 1310-1321, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35969859

RESUMO

DESCRIPTION: Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS: These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT): The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS): The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT: CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/terapia , Hospitalização , Humanos , Imunização Passiva/métodos , Soroterapia para COVID-19
13.
Cochrane Database Syst Rev ; 6: CD014945, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713300

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS: For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab.   Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Adulto , Idoso , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Humanos , Pessoa de Meia-Idade , SARS-CoV-2
14.
Blood Cancer J ; 12(5): 86, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641489

RESUMO

The efficacy of SARS-CoV-2 vaccination in patients with hematological malignancies (HM) appears limited due to disease and treatment-associated immune impairment. We conducted a systematic review of prospective studies published from 10/12/2021 onwards in medical databases to assess clinical efficacy parameters, humoral and cellular immunogenicity and adverse events (AE) following two doses of COVID-19 approved vaccines. In 57 eligible studies reporting 7393 patients, clinical outcomes were rarely reported and rates of SARS-CoV-2 infection (range 0-11.9%), symptomatic disease (0-2.7%), hospital admission (0-2.8%), or death (0-0.5%) were low. Seroconversion rates ranged from 38.1-99.1% across studies with the highest response rate in myeloproliferative diseases and the lowest in patients with chronic lymphocytic leukemia. Patients with B-cell depleting treatment had lower seroconversion rates as compared to other targeted treatments or chemotherapy. The vaccine-induced T-cell response was rarely and heterogeneously reported (26.5-85.9%). Similarly, AEs were rarely reported (0-50.9% ≥1 AE, 0-7.5% ≥1 serious AE). In conclusion, HM patients present impaired humoral and cellular immune response to COVID-19 vaccination with disease and treatment specific response patterns. In light of the ongoing pandemic with the easing of mitigation strategies, new approaches to avert severe infection are urgently needed for this vulnerable patient population that responds poorly to current COVID-19 vaccine regimens.


Assuntos
COVID-19 , Neoplasias Hematológicas , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/terapia , Humanos , Estudos Prospectivos , SARS-CoV-2
15.
J Clin Epidemiol ; 143: 202-211, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800677

RESUMO

BACKGROUND: Prognostic models combine several prognostic factors to provide an estimate of the likelihood (or risk) of future events in individual patients, conditional on their prognostic factor values. A fundamental part of evaluating prognostic models is undertaking studies to determine whether their predictive performance, such as calibration and discrimination, is reproduced across settings. Systematic reviews and meta-analyses of studies evaluating prognostic models' performance are a necessary step for selection of models for clinical practice and for testing the underlying assumption that their use will improve outcomes, including patient's reassurance and optimal future planning. METHODS: In this paper, we highlight key concepts in evaluating the certainty of evidence regarding the calibration of prognostic models. RESULTS AND CONCLUSION: Four concepts are key to evaluating the certainty of evidence on prognostic models' performance regarding calibration. The first concept is that the inference regarding calibration may take one of two forms: deciding whether one is rating certainty that a model's performance is satisfactory or, instead, unsatisfactory, in either case defining the threshold for satisfactory (or unsatisfactory) model performance. Second, inconsistency is the critical GRADE domain to deciding whether we are rating certainty in the model performance being satisfactory or unsatisfactory. Third, depending on whether one is rating certainty in satisfactory or unsatisfactory performance, different patterns of inconsistency of results across studies will inform ratings of certainty of evidence. Fourth, exploring the distribution of point estimates of observed to expected ratio across individual studies, and its determinants, will bear on the need for and direction of future research.


Assuntos
Prognóstico , Calibragem , Previsões , Humanos , Probabilidade
16.
Cochrane Database Syst Rev ; 11: CD012775, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784425

RESUMO

BACKGROUND: About 70% to 80% of adults with cancer experience chemotherapy-induced nausea and vomiting (CINV). CINV remains one of the most distressing symptoms associated with cancer therapy and is associated with decreased adherence to chemotherapy. Combining 5-hydroxytryptamine-3 (5-HT3) receptor antagonists with corticosteroids or additionally with neurokinin-1 (NK1) receptor antagonists is effective in preventing CINV among adults receiving highly emetogenic chemotherapy (HEC) or moderately emetogenic chemotherapy (MEC). Various treatment options are available, but direct head-to-head comparisons do not allow comparison of all treatments versus another.  OBJECTIVES: • In adults with solid cancer or haematological malignancy receiving HEC - To compare the effects of antiemetic treatment combinations including NK1 receptor antagonists, 5-HT3 receptor antagonists, and corticosteroids on prevention of acute phase (Day 1), delayed phase (Days 2 to 5), and overall (Days 1 to 5) chemotherapy-induced nausea and vomiting in network meta-analysis (NMA) - To generate a clinically meaningful treatment ranking according to treatment safety and efficacy • In adults with solid cancer or haematological malignancy receiving MEC - To compare whether antiemetic treatment combinations including NK1 receptor antagonists, 5-HT3 receptor antagonists, and corticosteroids are superior for prevention of acute phase (Day 1), delayed phase (Days 2 to 5), and overall (Days 1 to 5) chemotherapy-induced nausea and vomiting to treatment combinations including 5-HT3 receptor antagonists and corticosteroids solely, in network meta-analysis - To generate a clinically meaningful treatment ranking according to treatment safety and efficacy SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, conference proceedings, and study registries from 1988 to February 2021 for randomised controlled trials (RCTs). SELECTION CRITERIA: We included RCTs including adults with any cancer receiving HEC or MEC (according to the latest definition) and comparing combination therapies of NK1 and 5-HT3 inhibitors and corticosteroids for prevention of CINV. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We expressed treatment effects as risk ratios (RRs). Prioritised outcomes were complete control of vomiting during delayed and overall phases, complete control of nausea during the overall phase, quality of life, serious adverse events (SAEs), and on-study mortality. We assessed GRADE and developed 12 'Summary of findings' tables. We report results of most crucial outcomes in the abstract, that is, complete control of vomiting during the overall phase and SAEs. For a comprehensive illustration of results, we randomly chose aprepitant plus granisetron as exemplary reference treatment for HEC, and granisetron as exemplary reference treatment for MEC. MAIN RESULTS: Highly emetogenic chemotherapy (HEC) We included 73 studies reporting on 25,275 participants and comparing 14 treatment combinations with NK1 and 5-HT3 inhibitors. All treatment combinations included corticosteroids. Complete control of vomiting during the overall phase We estimated that 704 of 1000 participants achieve complete control of vomiting in the overall treatment phase (one to five days) when treated with aprepitant + granisetron. Evidence from NMA (39 RCTs, 21,642 participants; 12 treatment combinations with NK1 and 5-HT3 inhibitors) suggests that the following drug combinations are more efficacious than aprepitant + granisetron for completely controlling vomiting during the overall treatment phase (one to five days): fosnetupitant + palonosetron (810 of 1000; RR 1.15, 95% confidence interval (CI) 0.97 to 1.37; moderate certainty), aprepitant + palonosetron (753 of 1000; RR 1.07, 95% CI 1.98  to 1.18; low-certainty), aprepitant + ramosetron (753 of 1000; RR 1.07, 95% CI 0.95 to 1.21; low certainty), and fosaprepitant + palonosetron (746 of 1000; RR 1.06, 95% CI 0.96 to 1.19; low certainty).  Netupitant + palonosetron (704 of 1000; RR 1.00, 95% CI 0.93 to 1.08; high-certainty) and fosaprepitant + granisetron (697 of 1000; RR 0.99, 95% CI 0.93 to 1.06; high-certainty) have little to no impact on complete control of vomiting during the overall treatment phase (one to five days) when compared to aprepitant + granisetron, respectively.  Evidence further suggests that the following drug combinations are less efficacious than aprepitant + granisetron in completely controlling vomiting during the overall treatment phase (one to five days) (ordered by decreasing efficacy): aprepitant + ondansetron (676 of 1000; RR 0.96, 95% CI 0.88 to 1.05; low certainty), fosaprepitant + ondansetron (662 of 1000; RR 0.94, 95% CI 0.85 to 1.04; low certainty), casopitant + ondansetron (634 of 1000; RR 0.90, 95% CI 0.79 to 1.03; low certainty), rolapitant + granisetron (627 of 1000; RR 0.89, 95% CI 0.78 to 1.01; moderate certainty), and rolapitant + ondansetron (598 of 1000; RR 0.85, 95% CI 0.65 to 1.12; low certainty). We could not include two treatment combinations (ezlopitant + granisetron, aprepitant + tropisetron) in NMA for this outcome because of missing direct comparisons.  Serious adverse events We estimated that 35 of 1000 participants experience any SAEs when treated with aprepitant + granisetron. Evidence from NMA (23 RCTs, 16,065 participants; 11 treatment combinations) suggests that fewer participants may experience SAEs when treated with the following drug combinations than with aprepitant + granisetron: fosaprepitant + ondansetron (8 of 1000; RR 0.23, 95% CI 0.05 to 1.07; low certainty), casopitant + ondansetron (8 of 1000; RR 0.24, 95% CI 0.04 to 1.39; low certainty), netupitant + palonosetron (9 of 1000; RR 0.27, 95% CI 0.05 to 1.58; low certainty), fosaprepitant + granisetron (13 of 1000; RR 0.37, 95% CI 0.09 to 1.50; low certainty), and rolapitant + granisetron (20 of 1000; RR 0.57, 95% CI 0.19 to 1.70; low certainty). Evidence is very uncertain about the effects of aprepitant + ondansetron (8 of 1000; RR 0.22, 95% CI 0.04 to 1.14; very low certainty), aprepitant + ramosetron (11 of 1000; RR 0.31, 95% CI 0.05 to 1.90; very low certainty), fosaprepitant + palonosetron (12 of 1000; RR 0.35, 95% CI 0.04 to 2.95; very low certainty), fosnetupitant + palonosetron (13 of 1000; RR 0.36, 95% CI 0.06 to 2.16; very low certainty), and aprepitant + palonosetron (17 of 1000; RR 0.48, 95% CI 0.05 to 4.78; very low certainty) on the risk of SAEs when compared to aprepitant + granisetron, respectively.  We could not include three treatment combinations (ezlopitant + granisetron, aprepitant + tropisetron, rolapitant + ondansetron) in NMA for this outcome because of missing direct comparisons.  Moderately emetogenic chemotherapy (MEC) We included 38 studies reporting on 12,038 participants and comparing 15 treatment combinations with NK1 and 5-HT3 inhibitors, or 5-HT3 inhibitors solely. All treatment combinations included corticosteroids. Complete control of vomiting during the overall phase We estimated that 555 of 1000 participants achieve complete control of vomiting in the overall treatment phase (one to five days) when treated with granisetron. Evidence from NMA (22 RCTs, 7800 participants; 11 treatment combinations) suggests that the following drug combinations are more efficacious than granisetron in completely controlling vomiting during the overall treatment phase (one to five days): aprepitant + palonosetron (716 of 1000; RR 1.29, 95% CI 1.00 to 1.66; low certainty), netupitant + palonosetron (694 of 1000; RR 1.25, 95% CI 0.92 to 1.70; low certainty), and rolapitant + granisetron (660 of 1000; RR 1.19, 95% CI 1.06 to 1.33; high certainty).  Palonosetron (588 of 1000; RR 1.06, 95% CI 0.85 to 1.32; low certainty) and aprepitant + granisetron (577 of 1000; RR 1.06, 95% CI 0.85 to 1.32; low certainty) may or may not increase complete response in the overall treatment phase (one to five days) when compared to granisetron, respectively. Azasetron (560 of 1000; RR 1.01, 95% CI 0.76 to 1.34; low certainty) may result in little to no difference in complete response in the overall treatment phase (one to five days) when compared to granisetron. Evidence further suggests that the following drug combinations are less efficacious than granisetron in completely controlling vomiting during the overall treatment phase (one to five days) (ordered by decreasing efficacy): fosaprepitant + ondansetron (500 of 100; RR 0.90, 95% CI 0.66 to 1.22; low certainty), aprepitant + ondansetron (477 of 1000; RR 0.86, 95% CI 0.64 to 1.17; low certainty), casopitant + ondansetron (461 of 1000; RR 0.83, 95% CI 0.62 to 1.12; low certainty), and ondansetron (433 of 1000; RR 0.78, 95% CI 0.59 to 1.04; low certainty). We could not include five treatment combinations (fosaprepitant + granisetron, azasetron, dolasetron, ramosetron, tropisetron) in NMA for this outcome because of missing direct comparisons.  Serious adverse events We estimated that 153 of 1000 participants experience any SAEs when treated with granisetron. Evidence from pair-wise comparison (1 RCT, 1344 participants) suggests that more participants may experience SAEs when treated with rolapitant + granisetron (176 of 1000; RR 1.15, 95% CI 0.88 to 1.50; low certainty). NMA was not feasible for this outcome because of missing direct comparisons.  Certainty of evidence Our main reason for downgrading was serious or very serious imprecision (e.g. due to wide 95% CIs crossing or including unity, few events leading to wide 95% CIs, or small information size). Additional reasons for downgrading some comparisons or whole networks were serious study limitations due to high risk of bias or moderate inconsistency within networks. AUTHORS' CONCLUSIONS: This field of supportive cancer care is very well researched. However, new drugs or drug combinations are continuously emerging and need to be systematically researched and assessed. For people receiving HEC, synthesised evidence does not suggest one superior treatment for prevention and control of chemotherapy-induced nausea and vomiting.  For people receiving MEC, synthesised evidence does not suggest superiority for treatments including both NK1 and 5-HT3 inhibitors when compared to treatments including 5-HT3 inhibitors only. Rather, the results of our NMA suggest that the choice of 5-HT3 inhibitor may have an impact on treatment efficacy in preventing CINV.  When interpreting the results of this systematic review, it is important for the reader to understand that NMAs are no substitute for direct head-to-head comparisons, and that results of our NMA do not necessarily rule out differences that could be clinically relevant for some individuals.


Assuntos
Antieméticos , Antineoplásicos , Adulto , Antieméticos/uso terapêutico , Antineoplásicos/efeitos adversos , Humanos , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Náusea/prevenção & controle , Metanálise em Rede , Palonossetrom/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Vômito/prevenção & controle
17.
Cochrane Database Syst Rev ; 9: CD013825, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473343

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effectiveness and safety of SARS-CoV-2-neutralising mAbs for treating patients with COVID-19, compared to an active comparator, placebo, or no intervention. To maintain the currency of the evidence, we will use a living systematic review approach. A secondary objective is to track newly developed SARS-CoV-2-targeting mAbs from first tests in humans onwards.  SEARCH METHODS: We searched MEDLINE, Embase, the Cochrane COVID-19 Study Register, and three other databases on 17 June 2021. We also checked references, searched citations, and contacted study authors to identify additional studies. Between submission and publication, we conducted a shortened randomised controlled trial (RCT)-only search on 30 July 2021. SELECTION CRITERIA: We included studies that evaluated SARS-CoV-2-neutralising mAbs, alone or combined, compared to an active comparator, placebo, or no intervention, to treat people with COVID-19. We excluded studies on prophylactic use of SARS-CoV-2-neutralising mAbs. DATA COLLECTION AND ANALYSIS: Two authors independently assessed search results, extracted data, and assessed risk of bias using the Cochrane risk of bias tool (RoB2). Prioritised outcomes were all-cause mortality by days 30 and 60, clinical progression, quality of life, admission to hospital, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We identified six RCTs that provided results from 17,495 participants with planned completion dates between July 2021 and December 2031. Target sample sizes varied from 1020 to 10,000 participants. Average age was 42 to 53 years across four studies of non-hospitalised participants, and 61 years in two studies of hospitalised participants. Non-hospitalised individuals with COVID-19 Four studies evaluated single agents bamlanivimab (N = 465), sotrovimab (N = 868), regdanvimab (N = 307), and combinations of bamlanivimab/etesevimab (N = 1035), and casirivimab/imdevimab (N = 799). We did not identify data for mortality at 60 days or quality of life. Our certainty of the evidence is low for all outcomes due to too few events (very serious imprecision).  Bamlanivimab compared to placebo No deaths occurred in the study by day 29. There were nine people admitted to hospital by day 29 out of 156 in the placebo group compared with one out of 101 in the group treated with 0.7 g bamlanivimab (risk ratio (RR) 0.17, 95% confidence interval (CI) 0.02 to 1.33), 2 from 107 in the group treated with 2.8 g (RR 0.32, 95% CI 0.07 to 1.47) and 2 from 101 in the group treated with 7.0 g (RR 0.34, 95% CI 0.08 to 1.56). Treatment with 0.7 g, 2.8 g and 7.0 g bamlanivimab may have similar rates of AEs as placebo (RR 0.99, 95% CI 0.66 to 1.50; RR 0.90, 95% CI 0.59 to 1.38; RR 0.81, 95% CI 0.52 to 1.27). The effect on SAEs is uncertain. Clinical progression/improvement of symptoms or development of severe symptoms were not reported. Bamlanivimab/etesevimab compared to placebo There were 10 deaths in the placebo group and none in bamlanivimab/etesevimab group by day 30 (RR 0.05, 95% CI 0.00 to 0.81). Bamlanivimab/etesevimab may decrease hospital admission by day 29 (RR 0.30, 95% CI 0.16 to 0.59), may result in a slight increase in any grade AEs (RR 1.15, 95% CI 0.83 to 1.59) and may increase SAEs (RR 1.40, 95% CI 0.45 to 4.37). Clinical progression/improvement of symptoms or development of severe symptoms were not reported. Casirivimab/imdevimab compared to placebo Casirivimab/imdevimab may reduce hospital admissions or death (2.4 g: RR 0.43, 95% CI 0.08 to 2.19; 8.0 g: RR 0.21, 95% CI 0.02 to 1.79). We are uncertain of the effect on grades 3-4 AEs (2.4 g: RR 0.76, 95% CI 0.17 to 3.37; 8.0 g: RR 0.50, 95% CI 0.09 to 2.73) and SAEs (2.4 g: RR 0.68, 95% CI 0.19 to 2.37; 8.0 g: RR 0.34, 95% CI 0.07 to 1.65). Mortality by day 30 and clinical progression/improvement of symptoms or development of severe symptoms were not reported. Sotrovimab compared to placebo We are uncertain whether sotrovimab has an effect on mortality (RR 0.33, 95% CI 0.01 to 8.18) and invasive mechanical ventilation (IMV) requirement or death (RR 0.14, 95% CI 0.01 to 2.76). Treatment with sotrovimab may reduce the number of participants with oxygen requirement (RR 0.11, 95 % CI 0.02 to 0.45), hospital admission or death by day 30 (RR 0.14, 95% CI 0.04 to 0.48), grades 3-4 AEs (RR 0.26, 95% CI 0.12 to 0.60), SAEs (RR 0.27, 95% CI 0.12 to 0.63) and may have little or no effect on any grade AEs (RR 0.87, 95% CI 0.66 to 1.16).  Regdanvimab compared to placebo Treatment with either dose (40 or 80 mg/kg) compared with placebo may decrease hospital admissions or death (RR 0.45, 95% CI 0.14 to 1.42; RR 0.56, 95% CI 0.19 to 1.60, 206 participants), but may increase grades 3-4 AEs (RR 2.62, 95% CI 0.52 to 13.12; RR 2.00, 95% CI 0.37 to 10.70). 80 mg/kg may reduce any grade AEs (RR 0.79, 95% CI 0.52 to 1.22) but 40 mg/kg may have little to no effect (RR 0.96, 95% CI 0.64 to 1.43). There were too few events to allow meaningful judgment for the outcomes mortality by 30 days, IMV requirement, and SAEs.  Hospitalised individuals with COVID-19 Two studies evaluating bamlanivimab as a single agent (N = 314) and casirivimab/imdevimab as a combination therapy (N = 9785) were included.   Bamlanivimab compared to placebo  We are uncertain whether bamlanivimab has an effect on mortality by day 30 (RR 1.39, 95% CI 0.40 to 4.83) and SAEs by day 28 (RR 0.93, 95% CI 0.27 to 3.14). Bamlanivimab may have little to no effect on time to hospital discharge (HR 0.97, 95% CI 0.78 to 1.20) and mortality by day 90 (HR 1.09, 95% CI 0.49 to 2.43). The effect of bamlanivimab on the development of severe symptoms at day 5 (RR 1.17, 95% CI 0.75 to 1.85) is uncertain. Bamlanivimab may increase grades 3-4 AEs at day 28 (RR 1.27, 95% CI 0.81 to 1.98). We assessed the evidence as low certainty for all outcomes due to serious imprecision, and very low certainty for severe symptoms because of additional concerns about indirectness. Casirivimab/imdevimab with usual care compared to usual care alone Treatment with casirivimab/imdevimab compared to usual care probably has little or no effect on mortality by day 30 (RR 0.94, 95% CI 0.87 to 1.02), IMV requirement or death (RR 0.96, 95% CI 0.90 to 1.04), nor alive at hospital discharge by day 30 (RR 1.01, 95% CI 0.98 to 1.04). We assessed the evidence as moderate certainty due to study limitations (lack of blinding). AEs and SAEs were not reported.  AUTHORS' CONCLUSIONS: The evidence for each comparison is based on single studies. None of these measured quality of life. Our certainty in the evidence for all non-hospitalised individuals is low, and for hospitalised individuals is very low to moderate. We consider the current evidence insufficient to draw meaningful conclusions regarding treatment with SARS-CoV-2-neutralising mAbs. Further studies and long-term data from the existing studies are needed to confirm or refute these initial findings, and to understand how the emergence of SARS-CoV-2 variants may impact the effectiveness of SARS-CoV-2-neutralising mAbs. Publication of the 36 ongoing studies may resolve uncertainties about the effectiveness and safety of SARS-CoV-2-neutralising mAbs for the treatment of COVID-19 and possible subgroup differences.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Monoclonais/uso terapêutico , Causas de Morte , Humanos , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
J Clin Epidemiol ; 129: 126-137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007458

RESUMO

OBJECTIVES: To provide Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) guidance for the consideration of study limitations (risk of bias) due to missing participant outcome data for time-to-event outcomes in intervention studies. STUDY DESIGN AND SETTING: We developed this guidance through an iterative process that included membership consultation, feedback, presentation, and iterative discussion at meetings of the GRADE working group. RESULTS: The GRADE working group has published guidance on how to account for missing participant outcome data in binary and continuous outcomes. When analyzing time-to-event outcomes (e.g., overall survival and time-to-treatment failure) data of participants for whom the outcome of interest (e.g., death and relapse) has not been observed are dealt with through censoring. To do so, standard methods require that censored individuals are representative for those remaining in the study. Two types of censoring can be distinguished, end of study censoring and censoring because of missing data, commonly named loss to follow-up censoring. However, both types are not distinguishable with the usual information on censoring available to review authors. Dealing with individuals for whom data are missing during follow-up in the same way as individuals for whom full follow-up is available at the end of the study increases the risk of bias. Considerable differences in the treatment arms in the distribution of censoring over time (early versus late censoring), the overall degree of missing follow-up data, and the reasons why individuals were lost to follow-up may reduce the certainty in the study results. With often only very limited data available, review and guideline authors are required to make transparent and well-considered judgments when judging risk of bias of individual studies and then come to an overall grading decision for the entire body of evidence. CONCLUSION: Concern for risk of bias resulting from censoring of participants for whom follow-up data are missing in the underlying studies of a body of evidence can be expressed in the study limitations (risk of bias) domain of the GRADE approach.


Assuntos
Estudos Clínicos como Assunto , Abordagem GRADE , Viés , Estudos Clínicos como Assunto/métodos , Estudos Clínicos como Assunto/normas , Humanos , Perda de Seguimento , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/organização & administração , Pacientes Desistentes do Tratamento , Projetos de Pesquisa/normas , Medição de Risco
20.
Cochrane Database Syst Rev ; 7: CD012022, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32735048

RESUMO

BACKGROUND: Chronic lymphocytic leukaemia (CLL) is the most common cancer of the lymphatic system in Western countries. Several clinical and biological factors for CLL have been identified. However, it remains unclear which of the available prognostic models combining those factors can be used in clinical practice to predict long-term outcome in people newly-diagnosed with CLL. OBJECTIVES: To identify, describe and appraise all prognostic models developed to predict overall survival (OS), progression-free survival (PFS) or treatment-free survival (TFS) in newly-diagnosed (previously untreated) adults with CLL, and meta-analyse their predictive performances. SEARCH METHODS: We searched MEDLINE (from January 1950 to June 2019 via Ovid), Embase (from 1974 to June 2019) and registries of ongoing trials (to 5 March 2020) for development and validation studies of prognostic models for untreated adults with CLL. In addition, we screened the reference lists and citation indices of included studies. SELECTION CRITERIA: We included all prognostic models developed for CLL which predict OS, PFS, or TFS, provided they combined prognostic factors known before treatment initiation, and any studies that tested the performance of these models in individuals other than the ones included in model development (i.e. 'external model validation studies'). We included studies of adults with confirmed B-cell CLL who had not received treatment prior to the start of the study. We did not restrict the search based on study design. DATA COLLECTION AND ANALYSIS: We developed a data extraction form to collect information based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Independent pairs of review authors screened references, extracted data and assessed risk of bias according to the Prediction model Risk Of Bias ASsessment Tool (PROBAST). For models that were externally validated at least three times, we aimed to perform a quantitative meta-analysis of their predictive performance, notably their calibration (proportion of people predicted to experience the outcome who do so) and discrimination (ability to differentiate between people with and without the event) using a random-effects model. When a model categorised individuals into risk categories, we pooled outcome frequencies per risk group (low, intermediate, high and very high). We did not apply GRADE as guidance is not yet available for reviews of prognostic models. MAIN RESULTS: From 52 eligible studies, we identified 12 externally validated models: six were developed for OS, one for PFS and five for TFS. In general, reporting of the studies was poor, especially predictive performance measures for calibration and discrimination; but also basic information, such as eligibility criteria and the recruitment period of participants was often missing. We rated almost all studies at high or unclear risk of bias according to PROBAST. Overall, the applicability of the models and their validation studies was low or unclear; the most common reasons were inappropriate handling of missing data and serious reporting deficiencies concerning eligibility criteria, recruitment period, observation time and prediction performance measures. We report the results for three models predicting OS, which had available data from more than three external validation studies: CLL International Prognostic Index (CLL-IPI) This score includes five prognostic factors: age, clinical stage, IgHV mutational status, B2-microglobulin and TP53 status. Calibration: for the low-, intermediate- and high-risk groups, the pooled five-year survival per risk group from validation studies corresponded to the frequencies observed in the model development study. In the very high-risk group, predicted survival from CLL-IPI was lower than observed from external validation studies. Discrimination: the pooled c-statistic of seven external validation studies (3307 participants, 917 events) was 0.72 (95% confidence interval (CI) 0.67 to 0.77). The 95% prediction interval (PI) of this model for the c-statistic, which describes the expected interval for the model's discriminative ability in a new external validation study, ranged from 0.59 to 0.83. Barcelona-Brno score Aimed at simplifying the CLL-IPI, this score includes three prognostic factors: IgHV mutational status, del(17p) and del(11q). Calibration: for the low- and intermediate-risk group, the pooled survival per risk group corresponded to the frequencies observed in the model development study, although the score seems to overestimate survival for the high-risk group. Discrimination: the pooled c-statistic of four external validation studies (1755 participants, 416 events) was 0.64 (95% CI 0.60 to 0.67); 95% PI 0.59 to 0.68. MDACC 2007 index score The authors presented two versions of this model including six prognostic factors to predict OS: age, B2-microglobulin, absolute lymphocyte count, gender, clinical stage and number of nodal groups. Only one validation study was available for the more comprehensive version of the model, a formula with a nomogram, while seven studies (5127 participants, 994 events) validated the simplified version of the model, the index score. Calibration: for the low- and intermediate-risk groups, the pooled survival per risk group corresponded to the frequencies observed in the model development study, although the score seems to overestimate survival for the high-risk group. Discrimination: the pooled c-statistic of the seven external validation studies for the index score was 0.65 (95% CI 0.60 to 0.70); 95% PI 0.51 to 0.77. AUTHORS' CONCLUSIONS: Despite the large number of published studies of prognostic models for OS, PFS or TFS for newly-diagnosed, untreated adults with CLL, only a minority of these (N = 12) have been externally validated for their respective primary outcome. Three models have undergone sufficient external validation to enable meta-analysis of the model's ability to predict survival outcomes. Lack of reporting prevented us from summarising calibration as recommended. Of the three models, the CLL-IPI shows the best discrimination, despite overestimation. However, performance of the models may change for individuals with CLL who receive improved treatment options, as the models included in this review were tested mostly on retrospective cohorts receiving a traditional treatment regimen. In conclusion, this review shows a clear need to improve the conducting and reporting of both prognostic model development and external validation studies. For prognostic models to be used as tools in clinical practice, the development of the models (and their subsequent validation studies) should adapt to include the latest therapy options to accurately predict performance. Adaptations should be timely.


Assuntos
Leucemia Linfocítica Crônica de Células B/mortalidade , Modelos Teóricos , Adulto , Fatores Etários , Viés , Biomarcadores Tumorais , Calibragem , Intervalos de Confiança , Análise Discriminante , Intervalo Livre de Doença , Feminino , Genes p53/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos B/genética , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA