Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Magn Reson Med ; 83(4): 1442-1457, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31565814

RESUMO

PURPOSE: The purpose of this study is to introduce a novel design method of a shim coil array specifically optimized for whole brain shimming and to compare the performance of the resulting coils to conventional spherical harmonic shimming. METHODS: The proposed design approach is based on the stream function method and singular value decomposition. Eighty-four field maps from 12 volunteers measured in seven different head positions were used during the design process. The cross validation technique was applied to find an optimal number of coil elements in the array. Additional 42 field maps from 6 further volunteers were used for an independent validation. A bootstrapping technique was used to estimate the required population size to achieve a stable coil design. RESULTS: Shimming using 12 and 24 coil elements outperforms fourth- and fifth-order spherical harmonic shimming for all measured field maps, respectively. Coil elements show novel coil layouts compared to the conventional spherical harmonic coils and existing multi-coils. Both leave-one-out and independent validation demonstrate the generalization ability of the designed arrays. The bootstrapping analysis predicts that field maps from approximately 140 subjects need to be acquired to arrive at a stable design. CONCLUSIONS: The results demonstrate the validity of the proposed method to design a shim coil array matched to the human brain anatomy, which naturally satisfies the laws of electrodynamics. The design method may also be applied to develop new shim coil arrays matched to other human organs.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos
2.
Tomography ; 5(2): 248-259, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31245546

RESUMO

Matrix gradient coils with up to 84 coil elements were recently introduced for magnetic resonance imaging. Ideally, each element is driven by a dedicated amplifier, which may be technically and financially infeasible. Instead, several elements can be connected in series (called a "cluster") and driven by a single amplifier. In previous works, a set of clusters, called a "configuration," was sought to approximate a target field shape. Because a magnetic resonance pulse sequence requires several distinct field shapes, a mechanism to switch between configurations is needed. This can be achieved by a hypothetical switching circuit connecting all terminals of all elements with each other and with the amplifiers. For a predefined set of configurations, a switching circuit can be designed to require only a limited amount of switches. Here we introduce an algorithm to minimize the number of switches without affecting the ability of the configurations to accurately create the desired fields. The problem is modeled using graph theory and split into 2 sequential combinatorial optimization problems that are solved using simulated annealing. For the investigated cases, the results show that compared to unoptimized switching circuits, the reduction of switches in optimized circuits ranges from 8% to up to 44% (average of 31%). This substantial reduction is achieved without impeding circuit functionality. This study shows how technical effort associated with implementation and operation of a matrix gradient coil is related to different hardware setups and how to reduce this effort.


Assuntos
Amplificadores Eletrônicos , Imageamento por Ressonância Magnética/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Algoritmos , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos
3.
Magn Reson Imaging ; 52: 9-15, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29540330

RESUMO

PURPOSE: To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. METHODS: We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. RESULTS: In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. CONCLUSION: The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Imagens de Fantasmas , Software , Interface Usuário-Computador
4.
Magn Reson Med ; 79(2): 1181-1191, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28444778

RESUMO

PURPOSE: Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. METHODS: A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. RESULTS: Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are <1% of the original field. The coil is shown to be capable of creating nonlinear, and linear SEMs. In a DSV of 0.22 m gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. CONCLUSION: A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Dinâmica não Linear , Imagens de Fantasmas
5.
IEEE Trans Med Imaging ; 37(1): 284-292, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28841554

RESUMO

Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Algoritmos , Simulação por Computador , Desenho de Equipamento , Análise dos Mínimos Quadrados , Imageamento por Ressonância Magnética/normas
6.
MAGMA ; 31(2): 235-242, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28770356

RESUMO

OBJECTIVES: Guidewires are indispensable tools for intravascular MR-guided interventions. Recently, an MR-safe guidewire made from a glass-fiber/epoxy compound material with embedded iron particles was developed. The size of the induced susceptibility artifact, and thus the guidewire's visibility, depends on its orientation against B 0. We present a radial acquisition scheme with variable echo times that aims to reduce the artifact's orientation dependency. MATERIALS AND METHODS: The radial acquisition scheme uses sine-squared modulated echo times depending on the physical direction of the spoke to balance the susceptibility artifact of the guidewire. The acquisition scheme was studied in simulations based on dipole fields and in phantom experiments for different orientations of the guidewire against B 0. The simulated and measured artifact widths were quantitatively compared. RESULTS: Compared to acquisitions with non-variable echo times, the proposed acquisition scheme shows a reduced angular variability. For the two main orientations (i.e., parallel and perpendicular to B 0), the ratio of the artifact widths was reduced from about 2.2 (perpendicular vs. parallel) to about 1.2 with the variable echo time approach. CONCLUSION: The reduction of the orientation dependency of the guidewire's artifact via sine-squared varying echo times could be verified in simulations and measurements. The more balanced artifact allows for a better overall visibility of the guidewire.


Assuntos
Artefatos , Procedimentos Endovasculares , Vidro , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Cateterismo , Simulação por Computador , Compostos de Epóxi , Desenho de Equipamento , Humanos , Imagens de Fantasmas
7.
J Magn Reson ; 281: 217-228, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28628908

RESUMO

The increasing interest in spatial encoding with non-linear magnetic fields has intensified the need for coils that generates such fields. Matrix coils consisting of multiple coil elements appear to offer a high flexibility in generating customized encoding fields and are particularly promising for localized high resolution imaging applications. However, coil elements of existing matrix coils were primarily designed and constructed for better shimming and therefore are not expected to achieve an optimal performance for local spatial encoding. Moreover, eddy current properties of such coil elements were not fully explored. In this work, an optimization problem is formulated based on the requirement of local non-linear encoding and eddy current reduction that results in novel designs of coil elements for an actively-shielded matrix gradient coil. Two metrics are proposed to assess the performance of different coil element designs. The results are analyzed to reveal new insights into coil element design.

8.
Magn Reson Med ; 77(4): 1544-1552, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271292

RESUMO

PURPOSE: Implementing new magnetic resonance experiments, or sequences, often involves extensive programming on vendor-specific platforms, which can be time consuming and costly. This situation is exacerbated when research sequences need to be implemented on several platforms simultaneously, for example, at different field strengths. This work presents an alternative programming environment that is hardware-independent, open-source, and promotes rapid sequence prototyping. METHODS: A novel file format is described to efficiently store the hardware events and timing information required for an MR pulse sequence. Platform-dependent interpreter modules convert the file to appropriate instructions to run the sequence on MR hardware. Sequences can be designed in high-level languages, such as MATLAB, or with a graphical interface. Spin physics simulation tools are incorporated into the framework, allowing for comparison between real and virtual experiments. RESULTS: Minimal effort is required to implement relatively advanced sequences using the tools provided. Sequences are executed on three different MR platforms, demonstrating the flexibility of the approach. CONCLUSION: A high-level, flexible and hardware-independent approach to sequence programming is ideal for the rapid development of new sequences. The framework is currently not suitable for large patient studies or routine scanning although this would be possible with deeper integration into existing workflows. Magn Reson Med 77:1544-1552, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Software , Desenho de Equipamento , Projetos Piloto
9.
Magn Reson Med ; 76(1): 104-17, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26243290

RESUMO

PURPOSE: Multiple nonlinear gradient fields offer many potential benefits for spatial encoding including reduced acquisition time, fewer artefacts and region-specific imaging, although designing a suitable trajectory for such a setup is difficult. This work aims to optimize encoding trajectories for multiple nonlinear gradient fields based on the image signal-to-noise ratio. THEORY AND METHODS: Image signal-to-noise ratio is directly linked to the covariance of the reconstructed pixels, which can be calculated recursively for each projection of the trajectory under a Bayesian formulation. An evolutionary algorithm is used to find the higher-dimensional projections that minimize the pixel covariance, incorporating receive coil profiles, intravoxel dephasing, and reconstruction regularization. The resulting trajectories are tested through simulations and experiments. RESULTS: The optimized trajectories produce images with higher resolution and fewer artefacts compared with traditional approaches, particularly for high undersampling. However, higher-dimensional projection experiments strongly depend on accurate hardware and calibration. CONCLUSION: Computer-based optimization provides an efficient means to explore the large trajectory space created by the use of multiple nonlinear encoding fields. The optimization framework, as presented here, is necessary to fully exploit the advantages of nonlinear fields. Magn Reson Med 76:104-117, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Teorema de Bayes , Simulação por Computador , Interpretação Estatística de Dados , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA