Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38903084

RESUMO

The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the mammalian proton-coupled peptide transporter, PepT2, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical assays, establish the mechanism of antibiotic recognition and the important role of protonation in drug binding and transport.

2.
Nat Struct Mol Biol ; 30(11): 1786-1793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37482561

RESUMO

In mammals, the kidney plays an essential role in maintaining blood homeostasis through the selective uptake, retention or elimination of toxins, drugs and metabolites. Organic anion transporters (OATs) are responsible for the recognition of metabolites and toxins in the nephron and their eventual urinary excretion. Inhibition of OATs is used therapeutically to improve drug efficacy and reduce nephrotoxicity. The founding member of the renal organic anion transporter family, OAT1 (also known as SLC22A6), uses the export of α-ketoglutarate (α-KG), a key intermediate in the Krebs cycle, to drive selective transport and is allosterically regulated by intracellular chloride. However, the mechanisms linking metabolite cycling, drug transport and intracellular chloride remain obscure. Here, we present cryogenic-electron microscopy structures of OAT1 bound to α-KG, the antiviral tenofovir and clinical inhibitor probenecid, used in the treatment of Gout. Complementary in vivo cellular assays explain the molecular basis for α-KG driven drug elimination and the allosteric regulation of organic anion transport in the kidney by chloride.


Assuntos
Cloretos , Proteína 1 Transportadora de Ânions Orgânicos , Animais , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Cloretos/metabolismo , Rim/metabolismo , Transporte Biológico , Ânions/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mamíferos/metabolismo
3.
Nat Commun ; 12(1): 7147, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880232

RESUMO

Cysteine plays an essential role in cellular redox homoeostasis as a key constituent of the tripeptide glutathione (GSH). A rate limiting step in cellular GSH synthesis is the availability of cysteine. However, circulating cysteine exists in the blood as the oxidised di-peptide cystine, requiring specialised transport systems for its import into the cell. System xc- is a dedicated cystine transporter, importing cystine in exchange for intracellular glutamate. To counteract elevated levels of reactive oxygen species in cancerous cells system xc- is frequently upregulated, making it an attractive target for anticancer therapies. However, the molecular basis for ligand recognition remains elusive, hampering efforts to specifically target this transport system. Here we present the cryo-EM structure of system xc- in both the apo and glutamate bound states. Structural comparisons reveal an allosteric mechanism for ligand discrimination, supported by molecular dynamics and cell-based assays, establishing a mechanism for cystine transport in human cells.


Assuntos
Antiporters/química , Antiporters/metabolismo , Cistina/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/biossíntese , Sistema y+ de Transporte de Aminoácidos/química , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antiporters/genética , Bioquímica , Microscopia Crioeletrônica , Cisteína/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Células HEK293 , Humanos , Neoplasias , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
4.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433568

RESUMO

The SLC15 family of proton-coupled solute carriers PepT1 and PepT2 play a central role in human physiology as the principal route for acquiring and retaining dietary nitrogen. A remarkable feature of the SLC15 family is their extreme substrate promiscuity, which has enabled the targeting of these transporters for the improvement of oral bioavailability for several prodrug molecules. Although recent structural and biochemical studies on bacterial homologs have identified conserved sites of proton and peptide binding, the mechanism of peptide capture and ligand promiscuity remains unclear for mammalian family members. Here, we present the cryo-electron microscopy structure of the outward open conformation of the rat peptide transporter PepT2 in complex with an inhibitory nanobody. Our structure, combined with molecular dynamics simulations and biochemical and cell-based assays, establishes a framework for understanding peptide and prodrug recognition within this pharmaceutically important transporter family.


Assuntos
Pró-Fármacos , Simportadores , Animais , Microscopia Crioeletrônica , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportador 1 de Peptídeos/química , Peptídeos/metabolismo , Prótons , Ratos
5.
Nature ; 595(7865): 130-134, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040256

RESUMO

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Pemetrexede/química , Pemetrexede/metabolismo , Transportador de Folato Acoplado a Próton/química , Transportador de Folato Acoplado a Próton/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Transporte Biológico , Humanos , Modelos Moleculares , Transportador de Folato Acoplado a Próton/ultraestrutura , Prótons
6.
Mol Cell ; 58(6): 1040-52, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25982113

RESUMO

Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a ß-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/química , Peptídeos/química , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 2 Modificadora da Atividade de Receptores/química , Adrenomedulina/química , Adrenomedulina/genética , Adrenomedulina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA