Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
ACS Omega ; 9(25): 27397-27406, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947849

RESUMO

The long- and short-range structural chemistry of the C-type bixbyite compounds Th0.40Nd0.48Ce0.12O1.76, Th0.47Nd0.43Ce0.10O1.785, and Th0.45Nd0.37Ce0.18O1.815 is systematically examined using synchrotron X-ray powder diffraction (S-PXRD), high-energy resolution fluorescence detection X-ray absorption near edge (HERFD-XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS) measurements supported by electronic structure calculations. S-PXRD measurements revealed that the title compounds all form classical C-type bixbyite structures in space group Ia3̅ that have disordered cationic crystallographic sites with further observation of characteristic superlattice reflections corresponding to oxygen vacancies. Despite the occurrence of oxygen vacancies, HERFD-XANES measurements on the Ce L3-edge revealed that Ce incorporates as Ce4+ into the structures but involves local distortion that resembles cluster behavior and loss of nearest-neighbors. In comparison, HERFD-XANES measurements on the Nd L3-edge supported by electronic structure calculations reveal that Nd3+ adopts a local coordination environment similar to the long-range C-type structure while providing charge balancing for the formation of oxygen defects. Th L3-edge EXAFS analysis reveals shorter average Th-O distances in the title compounds in comparison to pristine ThO2 in addition to shorter Th-O and Th-Ce distances compared to Th-Th or Ce-Ce in the corresponding F-type binary oxides (ThO2 and CeO2). These distances are further found to decrease with the increased Nd content of the structures despite simultaneous observation of the overall lattice structure progressively expanding. Linear combination calculations of the M-O bond lengths are used to help explain these observations, where the role of oxygen defects, via Nd3+ incorporation, induces local bond contraction and enhanced Th cation valence, leading to the observed increased lattice expansion with progressive Nd3+ incorporation. Overall, the investigation points to the significance of dissimilar cations exhibiting variable short-range chemical behavior and how it can affect the long-range structural chemistry of complex oxides.

2.
Chemistry ; : e202400755, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860741

RESUMO

Historically, cerium has been attractive for pharmaceutical and industrial applications. The cerium atom has the unique ability to cycle between two chemical states (Ce(III) and Ce(IV)) and drastically adjust its electronic configuration: [Xe] 4f1 5d1 6s2 in response to a chemical reaction. Understanding how electrons drive chemical reactions is an important topic. The most direct way of probing the chemical and electronic structure of materials is by X-ray absorption spectroscopy (XAS) or X-ray absorption near-edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode. Such measurements at the Ce L3 edge have the advantage of a high penetration depth, enabling in-situ reaction studies in a time-resolved manner and investigation of material production or material performance under specific conditions. But how much do we understand Ce L3 XANES? This article provides an overview of the information that can be extracted from experimental Ce L3 XAS/XANES/HERFD data. A collection of XANES data recorded on various cerium systems in HERFD mode is presented here together with detailed discussions on data analysis and the current status of spectral interpretation, including electronic structure calculations.

3.
J Synchrotron Radiat ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917023

RESUMO

Introducing a new Main Editor of JSR.

4.
Nature ; 629(8013): 765-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778235
6.
Angew Chem Int Ed Engl ; 63(1): e202310953, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37749062

RESUMO

This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.

7.
Sci Rep ; 13(1): 20434, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993496

RESUMO

The electronic structure of UC[Formula: see text] (x = 0.9, 1.0, 1.1, 2.0) was studied by means of x-ray absorption spectroscopy (XAS) at the C K edge and measurements in the high energy resolution fluorescence detection (HERFD) mode at the U [Formula: see text] and [Formula: see text] edges. The full-relativistic density functional theory calculations taking into account the [Formula: see text] Coulomb interaction U and spin-orbit coupling (DFT+U+SOC) were also performed for UC and UC[Formula: see text]. While the U [Formula: see text] HERFD-XAS spectra of the studied samples reveal little difference, the U [Formula: see text] HERFD-XAS spectra show certain sensitivity to the varying carbon content in uranium carbides. The observed gradual changes in the U [Formula: see text] HERFD spectra suggest an increase in the C 2p-U 5f charge transfer, which is supported by the orbital population analysis in the DFT+U+SOC calculations, indicating an increase in the U 5f occupancy in UC[Formula: see text] as compared to that in UC. On the other hand, the density of states at the Fermi level were found to be significantly lower in UC[Formula: see text], thus affecting the thermodynamic properties. Both the x-ray spectroscopic data (in particular, the C K XAS measurements) and results of the DFT+U+SOC calculations indicate the importance of taking into account U and SOC for the description of the electronic structure of actinide carbides.

8.
Sci Rep ; 13(1): 12776, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550380

RESUMO

ThTi2O6 derived compounds with the brannerite structure were designed, synthesised, and characterised with the aim of stabilising incorporation of U5+ or U6+, at dilute concentration. Appropriate charge compensation was targeted by co-substitution of Gd3+, Ca2+, Al3+, or Cr3+, on the Th or Ti site. U L3 edge X-ray Absorption Near Edge Spectroscopy (XANES) and High Energy Resolution Fluorescence Detected U M4 edge XANES evidenced U5+ as the major oxidation state in all compounds, with a minor fraction of U6+ (2-13%). The balance of X-ray and Raman spectroscopy data support uranate, rather than uranyl, as the dominant U6+ speciation in the reported brannerites. It is considered that the U6+ concentration was limited by unfavourable electrostatic repulsion arising from substitution in the octahedral Th or Ti sites, which share two or three edges, respectively, with neighbouring polyhedra in the brannerite structure.

9.
Nat Commun ; 14(1): 2455, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117177

RESUMO

Cr-doped UO2 is a leading accident tolerant nuclear fuel where the complexity of Cr chemical states in the bulk material has prevented acquisition of an unequivocal understanding of the redox chemistry and mechanism for incorporation of Cr in the UO2 matrix. To resolve this, we have used electron paramagnetic resonance, high energy resolution fluorescence detection X-ray absorption near energy structure and extended X-ray absorption fine structure spectroscopic measurements to examine Cr-doped UO2 single crystal grains and bulk material. Ambient condition measurements of the single crystal grains, which have been mechanically extracted from bulk material, indicated Cr is incorporated substitutionally for U+4 in the fluorite lattice as Cr+3 with formation of additional oxygen vacancies. Bulk material measurements reveal the complexity of Cr states, where metallic Cr (Cr0) and oxide related Cr+2 and Cr+32O3 were identified and attributed to grain boundary species and precipitates, with concurrent (Cr+3xU+41-x)O2-0.5x lattice matrix incorporation. The deconvolution of chemical states via crystal vs. powder measurements enables the understanding of discrepancies in literature whilst providing valuable direction for safe continued use of Cr-doped UO2 fuels for nuclear energy generation.

10.
Sci Total Environ ; 875: 162593, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889400

RESUMO

Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D. hippei DSM 8344T showed a relatively fast removal of uranium from the supernatants in artificial Opalinus Clay pore water, but no removal in 30 mM bicarbonate solution. Combined speciation calculations and luminescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and some membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorption near-edge structure recorded in high-energy-resolution fluorescence-detection mode and extended X-ray absorption fine structure analysis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process. These findings offer new insights into U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.

11.
Nanomaterials (Basel) ; 12(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558337

RESUMO

This study is one of the first attempts to assess CeO2 nanoparticles as a nanoplatform for radiopharmaceuticals with radionuclides. The process of functionalization using a bifunctional azacrown ligand is described, and the resulting conjugates are characterized by IR and Raman spectroscopy. Their complexes with 207Bi show a high stability in medically relevant media, thus encouraging the further study of these conjugates in vivo as potential combined radiopharmaceuticals.

12.
Nat Chem ; 14(12): 1337-1338, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344818
13.
Environ Sci Technol ; 56(24): 17643-17652, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36449568

RESUMO

Over 60 years of nuclear activity have resulted in a global legacy of contaminated land and radioactive waste. Uranium (U) is a significant component of this legacy and is present in radioactive wastes and at many contaminated sites. U-incorporated iron (oxyhydr)oxides may provide a long-term barrier to U migration in the environment. However, reductive dissolution of iron (oxyhydr)oxides can occur on reaction with aqueous sulfide (sulfidation), a common environmental species, due to the microbial reduction of sulfate. In this work, U(VI)-goethite was initially reacted with aqueous sulfide, followed by a reoxidation reaction, to further understand the long-term fate of U species under fluctuating environmental conditions. Over the first day of sulfidation, a transient release of aqueous U was observed, likely due to intermediate uranyl(VI)-persulfide species. Despite this, overall U was retained in the solid phase, with the formation of nanocrystalline U(IV)O2 in the sulfidized system along with a persistent U(V) component. On reoxidation, U was associated with an iron (oxyhydr)oxide phase either as an adsorbed uranyl (approximately 65%) or an incorporated U (35%) species. These findings support the overarching concept of iron (oxyhydr)oxides acting as a barrier to U migration in the environment, even under fluctuating redox conditions.


Assuntos
Ferro , Urânio , Ferro/química , Oxirredução , Óxidos , Sulfetos , Urânio/química
15.
Environ Sci Nano ; 9(4): 1509-1518, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35520632

RESUMO

The aim of this study is to synthesize PuO2 nanoparticles (NPs) at low pH values and characterize the materials using laboratory and synchrotron-based methods. Properties of the PuO2 NPs formed under acidic conditions (pH 1-4) are explored here at the atomic scale. High-resolution transmission electron microscopy (HRTEM) is applied to characterize the crystallinity, morphology and size of the particles. It is found that 2 nm crystalline NPs are formed with a PuO2 crystal structure. High energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy at the Pu M4 edge has been used to identify the Pu oxidation states and recorded data are analysed using the theory based on the Anderson impurity model (AIM). The experimental data obtained on NPs show that the Pu(iv) oxidation state dominates in all NPs formed at pH 1-4. However, the suspension at pH 1 demonstrates the presence of Pu(iii) and Pu(vi) in addition to the Pu(iv), which is associated with redox dissolution of PuO2 NPs under acidic conditions. We discuss in detail the mechanism that affects the PuO2 NPs synthesis under acidic conditions and compare it with one in neutral and alkaline conditions. Hence, the results shown here, together with the first Pu M4 HERFD data on PuF3 and PuF4 compounds, are significant for the colloid facilitated transport governing the migration of plutonium in a subsurface environment.

16.
Dalton Trans ; 51(17): 6976-6977, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35383801

RESUMO

Correction for 'Formation of plutonium(IV) silicate species in very alkaline reactive media' by Paul Estevenon et al., Dalton Trans., 2021, 50, 12528-12536, DOI: 10.1039/D1DT02248B.

17.
J Synchrotron Radiat ; 29(Pt 2): 288-294, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254290

RESUMO

Extended X-ray absorption fine structure (EXAFS) is a comprehensive and usable method for characterizing the structures of various materials, including radioactive and nuclear materials. Unceasing discussions about the interpretation of EXAFS results for actinide nanoparticles (NPs) or colloids were still present during the last decade. In this study, new experimental data for PuO2 and CeO2 NPs with different average sizes were compared with published data on AnO2 NPs that highlight the best fit and interpretation of the structural data. In terms of the structure, PuO2, CeO2, ThO2, and UO2 NPs exhibit similar behaviors. Only ThO2 NPs have a more disordered and even partly amorphous structure, which results in EXAFS characteristics. The proposed new core-shell model for NPs with calculated effective coordination number perfectly fits the results of the variations in a metal-metal shell with a decrease in NP size.

18.
Chemistry ; 28(21): e202200119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35179271

RESUMO

Reaction of the N-heterocylic carbene ligand i PrIm (L1 ) and lithium bis(trimethylsilyl)amide (TMSA) as a base with UCl4 resulted in U(IV) and U(V) complexes. Uranium's +V oxidation state in (HL1 )2 [U(V)(TMSI)Cl5 ] (TMSI=trimethylsilylimido) (2) was confirmed by HERFD-XANES measurements. Solid state characterization by SC-XRD and geometry optimisation of [U(IV)(L1 )2 (TMSA)Cl3 ] (1) indicated a silylamido ligand mediated inverse trans influence (ITI). The ITI was examined regarding different metal oxidation states and was compared to transition metal analogues by theoretical calculations.

19.
Inorg Chem ; 61(4): 1817-1830, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35051333

RESUMO

We performed a systematic study of the complexes of trivalent lanthanide cations with the hydridotris(1-pyrazolyl)borato (Tp) ligand (LnTp3; Ln = La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu) using both high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) and resonant inelastic X-ray scattering (RIXS) at the lanthanide L3 absorption edge. Here, we report the results obtained and we discuss them against calculations performed using density functional theory (DFT) and atomic multiplet theory. The spectral shape and the elemental trends observed in the experimental HERFD-XANES spectra are well reproduced by DFT calculations, while the pre-edge energy interval is better described by atomic multiplet theory. The RIXS data show a generally rather complex pattern that originates from the intra-atomic electron-electron interactions in the intermediate and final states, as demonstrated by the good agreement obtained with calculations using an atomic-only model of the absorber. Guided by theoretical predictions, we discuss the possible origins of the observed spectral features and the trends in energy splitting across the series. The insight into the electronic structure of trivalent lanthanide compounds demonstrated here and obtained with advanced X-ray spectroscopies coupled with theoretical calculations can be applied to any lanthanide-bearing compound and be of great interest for all research fields involving lanthanides.

20.
J Synchrotron Radiat ; 29(Pt 1): 21-29, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985419

RESUMO

The uranium valence electronic structure in the prototypical undistorted perovskite KUO3 is reported on the basis of a comprehensive experimental study using multi-edge HERFD-XAS and relativistic quantum chemistry calculations based on density functional theory. Very good agreement is obtained between theory and experiments, including the confirmation of previously reported Laporte forbidden f-f transitions and X-ray photoelectron spectroscopic measurements. Many spectral features are clearly identified in the probed U-f, U-p and U-d states and the contribution of the O-p states in those features could be assessed. The octahedral crystal field strength, 10Dq, was found to be 6.6 (1.5) eV and 6.9 (4) eV from experiment and calculations, respectively. Calculated electron binding energies down to U-4f states are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA