Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Rep ; 43(3): 113906, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451812

RESUMO

Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Espinhas Dendríticas/metabolismo , Extinção Psicológica , Medo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal
2.
J Biol Chem ; 299(8): 105029, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442236

RESUMO

Communication between neurons relies on neurotransmission that takes place at synapses. Excitatory synapses are located primarily on dendritic spines that possess diverse morphologies, ranging from elongated filopodia to mushroom-shaped spines. Failure in the proper development of dendritic spines has detrimental consequences on neuronal connectivity, but the molecular mechanism that controls the balance of filopodia and mushroom spines is not well understood. G3BP1 is the key RNA-binding protein that assembles the stress granules in non-neuronal cells to adjust protein synthesis upon exogenous stress. Emerging evidence suggests that the biological significance of G3BP1 extends beyond its role in stress response, especially in the nervous system. However, the mechanism underlying the regulation and function of G3BP1 in neurons remains elusive. Here we found that G3BP1 suppresses protein synthesis and binds to the translation initiation factor eIF4E via its NTF2-like domain. Notably, the over-production of filopodia caused by G3BP1 depletion can be alleviated by blocking the formation of the translation initiation complex. We further found that the interaction of G3BP1 with eIF4E is regulated by arginine methylation. Knockdown of the protein arginine methyltransferase PRMT8 leads to elevated protein synthesis and filopodia production, which is reversed by the expression of methylation-mimetic G3BP1. Our study, therefore, reveals arginine methylation as a key regulatory mechanism of G3BP1 during dendritic spine morphogenesis and identifies eIF4E as a novel downstream target of G3BP1 in neuronal development independent of stress response.


Assuntos
DNA Helicases , Espinhas Dendríticas , Fator de Iniciação 4E em Eucariotos , Neurônios , Arginina/metabolismo , Proteínas de Transporte/metabolismo , Espinhas Dendríticas/metabolismo , DNA Helicases/metabolismo , Hipocampo/metabolismo , Metilação , Neurônios/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Ratos , Fator de Iniciação 4E em Eucariotos/metabolismo
3.
FEBS J ; 289(8): 2128-2144, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34796656

RESUMO

The Kinesin superfamily proteins (KIFs) are major molecular motors that transport diverse set of cargoes along microtubules to both the axon and dendrite of a neuron. Much of our knowledge about kinesin function is obtained from studies on axonal transport. Emerging evidence reveals how specific kinesin motor proteins carry cargoes to dendrites, including proteins, mRNAs and organelles that are crucial for synapse development and plasticity. In this review, we will summarize the major kinesin motors and their associated cargoes that have been characterized to regulate postsynaptic function in neuron. We will also discuss how specific kinesins are selectively involved in the development of excitatory and inhibitory postsynaptic compartments, their regulation by post-translational modifications (PTM), as well as their roles beyond conventional transport carrier.


Assuntos
Cinesinas , Neurônios , Axônios/metabolismo , Dineínas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Miosinas/metabolismo , Neurônios/metabolismo
4.
Life (Basel) ; 11(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34833008

RESUMO

Among the nine mammalian protein arginine methyltransferases (PRMTs), PRMT8 is unusual because it has restricted expression in the nervous system and is the only membrane-bound PRMT. Emerging studies have demonstrated that this enzyme plays multifaceted roles in diverse processes in neurons. Here we will summarize the unique structural features of PRMT8 and describe how it participates in various neuronal functions such as dendritic growth, synapse maturation, and synaptic plasticity. Recent evidence suggesting the potential role of PRMT8 function in neurological diseases will also be discussed.

5.
Cell Rep ; 31(10): 107744, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521269

RESUMO

Excitatory synapses of neurons are located on dendritic spines. Spine maturation is essential for the stability of synapses and memory consolidation, and overproduction of the immature filopodia is associated with brain disorders. The structure and function of synapses can be modulated by protein post-translational modification (PTM). Arginine methylation is a major PTM that regulates chromatin structure, transcription, and splicing within the nucleus. Here we find that the protein arginine methyltransferase PRMT8 is present at neuronal synapses and its expression is upregulated in the hippocampus when dendritic spine maturation occurs. Depletion of PRMT8 leads to overabundance of filopodia and mis-localization of excitatory synapses. Mechanistically, PRMT8 promotes dendritic spine morphology through methylation of the dendritic RNA-binding protein G3BP1 and suppression of the Rac1-PAK1 signaling pathway to control synaptic actin dynamics. Our findings unravel arginine methylation as a crucial regulatory mechanism for actin cytoskeleton during synapse development.


Assuntos
Citoesqueleto de Actina/metabolismo , DNA Helicases/metabolismo , Espinhas Dendríticas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Helicases/metabolismo , Animais , Arginina/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sinapses/metabolismo
6.
Mol Autism ; 11(1): 40, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460854

RESUMO

Autism spectrum disorder (ASD) is a brain disorder that involves changes in neuronal connections. Abnormal morphology of dendritic spines on postsynaptic neurons has been observed in ASD patients and transgenic mice that model different monogenetic causes of ASD. A number of ASD-associated genetic variants are known to disrupt dendritic local protein synthesis, which is essential for spine morphogenesis, synaptic transmission, and plasticity. Most of our understanding on the molecular mechanism underlying ASD depends on studies using rodents. However, recent advance in human pluripotent stem cells and their neural differentiation provides a powerful alternative tool to understand the cellular aspects of human neurological disorders. In this review, we summarize recent progress on studying mRNA targeting and local protein synthesis in stem cell-derived neurons, and discuss how perturbation of these processes may impact synapse development and functions that are relevant to cognitive deficits in ASD.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica , Morfogênese , Biossíntese de Proteínas , Animais , Biomarcadores , Diferenciação Celular/genética , Espinhas Dendríticas/genética , Suscetibilidade a Doenças , Humanos , Morfogênese/genética , Mutação , Neurônios/citologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro
7.
PLoS Genet ; 16(1): e1008587, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004315

RESUMO

Perturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors. Here we report that TBC1D24 is present at the postsynaptic sites of excitatory synapses, where it is required for the maintenance of dendritic spines through inhibition of the small GTPase ARF6. Mice subjected to viral-mediated knockdown of TBC1D24 in the adult hippocampus display dendritic spine loss, deficits in contextual fear memory, as well as abnormal behaviors including hyperactivity and increased anxiety. Interestingly, we show that the protein stability of TBC1D24 is diminished by the disease-associated missense mutation that leads to F251L amino acid substitution. We further generate the F251L knock-in mice, and the homozygous mutants show increased neuronal excitability, spontaneous seizure and pre-mature death. Moreover, the heterozygous F251L knock-in mice survive into adulthood but display dendritic spine defects and impaired memory. Our findings therefore uncover a previously uncharacterized postsynaptic function of TBC1D24, and suggest that impaired dendritic spine maintenance contributes to the pathophysiology of individuals harboring TBC1D24 gene mutations. The F251L knock-in mice represent a useful animal model for investigation of the mechanistic link between TBC1D24 loss-of-function and neurodevelopmental disorders.


Assuntos
Epilepsia/genética , Potenciais Pós-Sinápticos Excitadores , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/genética , Animais , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiologia , Memória , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Neurônios/metabolismo , Neurônios/patologia , Neurônios/fisiologia
8.
Elife ; 92020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31961321

RESUMO

The kinesin I family of motor proteins are crucial for axonal transport, but their roles in dendritic transport and postsynaptic function are not well-defined. Gene duplication and subsequent diversification give rise to three homologous kinesin I proteins (KIF5A, KIF5B and KIF5C) in vertebrates, but it is not clear whether and how they exhibit functional specificity. Here we show that knockdown of KIF5A or KIF5B differentially affects excitatory synapses and dendritic transport in hippocampal neurons. The functional specificities of the two kinesins are determined by their diverse carboxyl-termini, where arginine methylation occurs in KIF5B and regulates its function. KIF5B conditional knockout mice exhibit deficits in dendritic spine morphogenesis, synaptic plasticity and memory formation. Our findings provide insights into how expansion of the kinesin I family during evolution leads to diversification and specialization of motor proteins in regulating postsynaptic function.


Transporting molecules within a cell becomes a daunting task when the cell is a neuron, with fibers called axons and dendrites that can stretch as long as a meter. Neurons use many different molecules to send messages across the body and store memories in the brain. If the right molecules cannot be delivered along the length of nerve cells, connections to neighboring neurons may decay, which may impair learning and memory. Motor proteins are responsible for transporting molecules within cells. Kinesins are a type of motor protein that typically transports materials from the body of a neuron to the cell's periphery, including the dendrites, which is where a neuron receives messages from other nerve cells. Each cell has up to 45 different kinesin motors, but it is not known whether each one performs a distinct task or if they have overlapping roles. Now, Zhao, Fok et al. have studied two similar kinesins, called KIF5A and KIF5B, in rodent neurons to determine their roles. First, it was shown that both proteins were found at dendritic spines, which are small outgrowths on dendrites where contact with other cells occurs. Next, KIF5A and KIF5B were depleted, one at a time, from neurons extracted from a brain region called the hippocampus. Removing KIF5B interfered with the formation of dendritic spines, but removing KIF5A did not have an effect. Dendritic spines are essential for learning and memory, so several behavioral tests were conducted on mice that had been genetically modified to express less KIF5B in the forebrain. These tests revealed that the mice performed poorly in tasks that tested their memory recall. This work opens a new area of research studying the specific roles of different kinesin motor proteins in nerve cells. This could have important implications because certain kinesin motor proteins such as KIF5A are known to be defective in some inherited neurodegenerative diseases.


Assuntos
Espinhas Dendríticas/metabolismo , Cinesinas/genética , Memória , Plasticidade Neuronal , Sequência de Aminoácidos , Animais , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Aprendizagem , Metilação , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Frações Subcelulares/metabolismo
9.
Dev Neurobiol ; 79(1): 20-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304570

RESUMO

Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/cirurgia , Sinapses/patologia , Animais , Humanos
10.
Methods Mol Biol ; 1722: 211-222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29264808

RESUMO

Receptor tyrosine kinases (RTK) belong to a major class of cell surface receptors that transduce extracellular signals to elicit diverse intracellular responses. Upon binding to specific ligand, the RTKs become dimerized and autophosphorylated at tyrosine residues. This creates binding sites to recruit specific signaling intermediates and hence trigger distinct signaling events. The cellular response to a given RTK may be modified through the regulation of membrane insertion and receptor internalization. Here we use Trk receptor and its ligand, the neurotrophin brain-derived neurotrophic factor (BDNF), as an example to illustrate the approaches (coimmunoprecipitation and biotinylation) to study the surface expression and signal transduction mediated by this class of RTK in the nervous system.


Assuntos
Biotinilação/métodos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunoprecipitação/métodos , Neurônios/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Animais , Encéfalo/citologia , Encéfalo/embriologia , Células HEK293 , Humanos , Ligantes , Camundongos , Fosforilação , Cultura Primária de Células , Ratos , Tirosina/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(33): E6992-E7001, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760951

RESUMO

The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Dendritos/metabolismo , Proteínas/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Camundongos , Fosforilação/fisiologia , Ratos
12.
J Biol Chem ; 292(23): 9451-9464, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28442576

RESUMO

Dendritic spines are heterogeneous and exist with various morphologies. Altered spine morphology might underlie the cognitive deficits in neurodevelopmental disorders such as autism, but how different subtypes of dendritic spines are selectively maintained along development is still poorly understood. Spine maturation requires spontaneous activity of N-methyl-d-aspartate (NMDA) receptor and local dendritic protein synthesis. STRN4 (also called zinedin) belongs to the striatin family of scaffold proteins, and some of the potential striatin-interacting proteins are encoded by autism risk genes. Although previous studies have demonstrated their localization in dendritic spines, the function of various striatin family members in the neuron remains unknown. Here, we demonstrate that Strn4 mRNA is present in neuronal dendrites, and the local expression of STRN4 protein depends on NMDA receptor activation. Notably, STRN4 is preferentially expressed in mushroom spines, and STRN4 specifically maintains mushroom spines but not thin spines and filopodia through interaction with the phosphatase PP2A. Our findings have therefore unraveled the local expression of STRN4 as a novel mechanism for the control of dendritic spine morphology.


Assuntos
Proteínas de Ligação a Calmodulina/biossíntese , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteína Fosfatase 2/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Humanos , Ratos , Ratos Sprague-Dawley
13.
Nat Commun ; 7: 13282, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796283

RESUMO

Dendritic spine stabilization depends on afferent synaptic input and requires changes in actin cytoskeleton dynamics and protein synthesis. However, the underlying molecular mechanism remains unclear. Here we report the identification of 'calmodulin kinase-like vesicle-associated' (CaMKv), a pseudokinase of the CaMK family with unknown function, as a synaptic protein crucial for dendritic spine maintenance. CaMKv mRNA localizes at dendrites, and its protein synthesis is regulated by neuronal activity. CaMKv function is inhibited upon phosphorylation by cyclin-dependent kinase 5 (Cdk5) at Thr345. Furthermore, CaMKv knockdown in mouse hippocampal CA1 pyramidal neurons impairs synaptic transmission and plasticity in vivo, resulting in hyperactivity and spatial memory impairment. These findings collectively indicate that the precise regulation of CaMKv through activity-dependent synthesis and post-translational phosphorylation is critical for dendritic spine maintenance, revealing an unusual signalling pathway in the regulation of synaptic transmission and brain function that involves a pseudokinase.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Citoesqueleto/metabolismo , Dendritos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo , Transdução de Sinais , Sinapses , Transmissão Sináptica , Sinaptossomos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
14.
Sci Signal ; 9(444): ra89, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27601731

RESUMO

Some forms of familial Alzheimer's disease (FAD) are caused by mutations in presenilins (PSs), catalytic components of a γ-secretase complex that cleaves target proteins, including amyloid precursor protein (APP). Calcium (Ca(2+)) dysregulation in cells with these FAD-causing PS mutants has been attributed to attenuated store-operated Ca(2+) entry [SOCE; also called capacitative Ca(2+) entry (CCE)]. CCE occurs when STIM1 detects decreases in Ca(2+) in the endoplasmic reticulum (ER) and activates ORAI channels to replenish Ca(2+) stores in the ER. We showed that CCE was attenuated by PS1-associated γ-secretase activity. Endogenous PS1 and STIM1 interacted in human neuroblastoma SH-SY5Y cells, patient fibroblasts, and mouse primary cortical neurons. Forms of PS1 with FAD-associated mutations enhanced γ-secretase cleavage of the STIM1 transmembrane domain at a sequence that was similar to the γ-secretase cleavage sequence of APP. Cultured hippocampal neurons expressing mutant PS1 had attenuated CCE that was associated with destabilized dendritic spines, which were rescued by either γ-secretase inhibition or overexpression of STIM1. Our results indicate that γ-secretase activity may physiologically regulate CCE by targeting STIM1 and that restoring STIM1 may be a therapeutic approach in AD.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Sinalização do Cálcio , Mutação , Proteínas de Neoplasias/metabolismo , Presenilina-1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/genética , Presenilina-1/genética , Ratos , Molécula 1 de Interação Estromal/genética
16.
J Neurosci ; 35(45): 15127-34, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558783

RESUMO

The proper growth and arborization of dendrites in response to sensory experience are essential for neural connectivity and information processing in the brain. Although neuronal activity is important for sculpting dendrite morphology, the underlying molecular mechanisms are not well understood. Here, we report that cyclin-dependent kinase 5 (Cdk5)-mediated transcriptional regulation is a key mechanism that controls activity-dependent dendrite development in cultured rat neurons. During membrane depolarization, Cdk5 accumulates in the nucleus to regulate the expression of a subset of genes, including that of the neurotrophin brain-derived neurotrophic factor, for subsequent dendritic growth. Furthermore, Cdk5 function is mediated through the phosphorylation of methyl-CpG-binding protein 2, a key transcriptional repressor that is mutated in the mental disorder Rett syndrome. These findings collectively suggest that the nuclear import of Cdk5 is crucial for activity-dependent dendrite development by regulating neuronal gene transcription during neural development. SIGNIFICANCE STATEMENT: Neural activity directs dendrite development through the regulation of gene transcription. However, how molecular signals link extracellular stimuli to the transcriptional program in the nucleus remains unclear. Here, we demonstrate that neuronal activity stimulates the translocation of the kinase Cdk5 from the cytoplasmic compartment into the nucleus; furthermore, the nuclear localization of Cdk5 is required for dendrite development in cultured neurons. Genome-wide transcriptome analysis shows that Cdk5 deficiency specifically disrupts activity-dependent gene transcription of bdnf. The action of Cdk5 is mediated through the modulation of the transcriptional repressor methyl-CpG-binding protein 2. Therefore, this study elucidates the role of nuclear Cdk5 in the regulation of activity-dependent gene transcription and dendritic growth.


Assuntos
Quinase 5 Dependente de Ciclina/fisiologia , Dendritos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Animais , Células Cultivadas , Dendritos/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ratos
17.
J Biol Chem ; 290(23): 14637-46, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25903132

RESUMO

The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Espinhas Dendríticas/ultraestrutura , Neurônios/citologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Espinhas Dendríticas/metabolismo , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 70-kDa/análise
18.
Mini Rev Med Chem ; 15(5): 390-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807947

RESUMO

The development and function of neuronal synapses are orchestrated by various extrinsic factors through intracellular signaling cascades that often involve protein kinases. One important kinase at the synapse is the proline-directed serine/ threonine kinase Cdk5. Although early pharmacological and genetic studies have pointed out the critical role of Cdk5 in regulating synapse function, the precise mechanisms have only been unraveled in recent years through the identification and characterization of multiple substrates. Emerging studies also indicate that Cdk5 dysregulation is linked to mitochondrial dysfunction. This review focuses on recent progress in our understanding of the multiple roles of Cdk5 in mitochondrial function, synapse development and plasticity through phosphorylation of specific substrates at different cellular compartments.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Sinapses/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Humanos , Mitocôndrias/metabolismo , Plasticidade Neuronal , Interferência de RNA , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Biochim Biophys Acta ; 1832(12): 2257-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012719

RESUMO

Dendritic spines are specialized structures on neuronal processes where the majority of excitatory synapses are localized. Spines are highly dynamic, and their stabilization and morphology are influenced by synaptic activity. This extrinsic regulation of spine morphogenesis underlies experience-dependent brain development and information storage within the brain circuitry. In this review, we summarize recent findings that demonstrate the phenomenon of activity-dependent structural plasticity and the molecular mechanisms by which synaptic activity sculpt neuronal connections. Impaired structural plasticity is associated with perturbed brain function in neurodevelopmental disorders such as autism. Information from the mechanistic studies therefore provides important insights into the design of therapeutic strategies for these brain disorders.


Assuntos
Encefalopatias/patologia , Espinhas Dendríticas , Plasticidade Neuronal , Animais , Humanos
20.
Nat Neurosci ; 15(11): 1506-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064382

RESUMO

The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB participate in diverse neuronal functions, including activity-dependent synaptic plasticity that is crucial for learning and memory. On binding to BDNF, TrkB is not only autophosphorylated at tyrosine residues but also undergoes serine phosphorylation at S478 by the serine/threonine kinase cyclin-dependent kinase 5 (Cdk5). However, the in vivo function of this serine phosphorylation remains unknown. We generated knock-in mice lacking this serine phosphorylation (Trkb(S478A/S478A) mice) and found that the TrkB phosphorylation-deficient mice displayed impaired spatial memory and compromised hippocampal long-term potentiation (LTP). S478 phosphorylation of TrkB regulates its interaction with the Rac1-specific guanine nucleotide exchange factor TIAM1, leading to activation of Rac1 and phosphorylation of S6 ribosomal protein during activity-dependent dendritic spine remodeling. These findings reveal the importance of Cdk5-mediated S478 phosphorylation of TrkB in activity-dependent structural plasticity, which is crucial for LTP and spatial memory formation.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Receptor trkB/metabolismo , Comportamento Espacial/fisiologia , Análise de Variância , Animais , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Quinase 5 Dependente de Ciclina/deficiência , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanilato Quinases/metabolismo , Humanos , Imunoprecipitação/métodos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Fosforilação/genética , Quinoxalinas/farmacologia , Ratos , Receptor trkB/genética , Proteínas Quinases S6 Ribossômicas , Serina/metabolismo , Coloração pela Prata , Sinaptofisina/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Fatores de Tempo , Transfecção , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA