Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 113: 102659, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598612

RESUMO

INTRODUCTION: A growing interest in using proton pencil beam scanning in combination with collimators for the treatment of small, shallow targets, such as ocular melanoma or pre-clinical research emerged recently. This study aims at demonstrating that the dose of a synchrotron-based PBS system with a dedicated small, shallow field nozzle can be accurately predicted by a commercial treatment planning system (TPS) following appropriate tuning of both, nozzle and TPS. MATERIALS: A removable extension to the clinical nozzle was developed to modify the beam shape passively. Five circular apertures with diameters between 5 to 34mm, mounted 72cm downstream of a range shifter were used. For each collimator treatment plans with spread-out Bragg peaks (SOBP) with a modulation of 3 to 30mm were measured and calculated with GATE/Geant4 and the research TPS RayStation (RS11B-R). The dose grid, multiple coulomb scattering and block discretization resolution were varied to find the optimal balance between accuracy and performance. RESULTS: For SOBPs deeper than 10mm, the dose in the target agreed within 1% between RS11B-R, GATE/Geant4 and measurements for aperture diameters between 8 to 34mm, but deviated up to 5% for smaller apertures. A plastic taper was introduced reducing scatter contributions to the patient (from the pipe) and improving the dose calculation accuracy of the TPS to a 5% level in the entrance region for large apertures. CONCLUSION: The commercial TPS and GATE/Geant4 can accurately calculate the dose for shallow, small proton fields using a collimator and pencil beam scanning.


Assuntos
Neoplasias Oculares , Terapia com Prótons , Humanos , Prótons , Síncrotrons , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA