Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 247(1): 135-146, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376595

RESUMO

The Src homology-2 domain-containing tyrosine phosphatase 2 (SHP-2) regulates many cellular processes, including proliferation, differentiation and survival. Polymorphisms in the gene encoding SHP-2 are associated with an increased susceptibility to develop ulcerative colitis. We recently reported that intestinal epithelial cell (IEC)-specific deletion of Shp-2 in mice (Shp-2IEC-KO ) leads to chronic colitis and colitis-associated cancer. This suggests that SHP-2-dependent signaling protects the colonic epithelium against inflammation and colitis-associated cancer development. To verify this hypothesis, we generated mice expressing the Shp-2 E76K activated form specifically in IEC. Our results showed that sustained Shp-2 activation in IEC increased intestine and crypt length, correlating with increased cell proliferation and migration. Crypt regeneration capacity was also markedly enhanced, as revealed by ex vivo organoid culture. Shp-2 activation alters the secretory cell lineage, as evidenced by increased goblet cell numbers and mucus secretion. Notably, these mice also demonstrated elevated ERK signaling in IEC and exhibited resistance against both chemical- and Citrobacter rodentium-induced colitis. In contrast, mice with IEC-specific Shp-2 deletion displayed reduced ERK signaling and rapidly developed chronic colitis. Remarkably, expression of an activated form of Braf in Shp-2-deficient mice restored ERK activation, goblet cell production and prevented colitis. Altogether, our results indicate that chronic activation of Shp-2/ERK signaling in the colonic epithelium confers resistance to mucosal erosion and colitis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Movimento Celular , Proliferação de Células , Colite/prevenção & controle , Colo/enzimologia , Células Caliciformes/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Regeneração , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Colite/enzimologia , Colite/genética , Colite/patologia , Colo/patologia , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Caliciformes/patologia , Camundongos Transgênicos , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Cicatrização
2.
Oncotarget ; 7(40): 65676-65695, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27582544

RESUMO

A major risk factor of developing colorectal cancer (CRC) is the presence of chronic inflammation in the colon. In order to understand how inflammation contributes to CRC development, the present study focused on SHP-2, a tyrosine phosphatase encoded by PTPN11 gene in which polymorphisms have been shown to be markers of colitis susceptibility. Conversely, gain-of-function mutations in PTPN11 gene (E76 residue) have been found in certain sporadic CRC. Results shown herein demonstrate that SHP-2 expression was markedly increased in sporadic human adenomas but not in advanced colorectal tumors. SHP-2 silencing inhibited proliferative, invasive and tumoral properties of both intestinal epithelial cells (IECs) transformed by oncogenic KRAS and of human CRC cells. IEC-specific expression of a SHP-2E76K activated mutant in mice was not sufficient to induce tumorigenesis but markedly promoted tumor growth under the ApcMin/+ background. Conversely, mice with a conditional deletion of SHP-2 in IECs developed colitis-associated adenocarcinomas with age, associated with sustained activation of Wnt/ß-catenin, NFκB and STAT3 signalings in the colonic mucosae. Moreover, SHP-2 epithelial deficiency considerably increased tumor load in ApcMin/+ mice, shifting tumor incidence toward the colon. Overall, these results reveal that SHP-2 can exert opposing functions in the large intestine: it can promote or inhibit tumorigenesis depending of the inflammatory context.


Assuntos
Adenocarcinoma/prevenção & controle , Biomarcadores Tumorais/metabolismo , Colite/complicações , Neoplasias Colorretais/prevenção & controle , Neoplasias Intestinais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/etiologia , Adenocarcinoma/patologia , Animais , Apoptose , Carcinogênese , Proliferação de Células , Colite/fisiopatologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Intestinais/etiologia , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Transdução de Sinais , Células Tumorais Cultivadas
3.
J Cell Physiol ; 231(11): 2529-40, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27100271

RESUMO

Polymorphisms in the PTPN11 gene encoding for the tyrosine phosphatase SHP-2 were described in patients with ulcerative colitis. We have recently demonstrated that mice with an intestinal epithelial cell-specific deletion of SHP-2 (SHP-2(IEC-KO) ) develop severe colitis 1 month after birth. However, the mechanisms by which SHP-2 deletion induces colonic inflammation remain to be elucidated. We generated SHP-2(IEC-KO) mice lacking Myd88 exclusively in the intestinal epithelium. The colonic phenotype was histologically analyzed and cell differentiation was determined by electron microscopy and lysozyme or Alcian blue staining. Microbiota composition was analyzed by 16S sequencing. Results show that innate defense genes including those specific to Paneth cells were strongly up-regulated in SHP-2-deficient colons. Expansion of intermediate cells (common progenitors of the Goblet and Paneth cell lineages) was found in the colon of SHP-2(IEC-KO) mice whereas Goblet cell number was clearly diminished. These alterations in Goblet/intermediate cell ratio were noticed 2 weeks after birth, before the onset of inflammation and were associated with significant alterations in microbiota composition. Indeed, an increase in Enterobacteriaceae and a decrease in Firmicutes were observed in the colon of these mice, indicating that dysbiosis also occurred prior to inflammation. Importantly, loss of epithelial Myd88 expression inhibited colitis development in SHP-2(IEC-KO) mice, rescued Goblet/intermediate cell ratio, and prevented NFκB hyperactivation and inflammation. These data indicate that SHP-2 is functionally important for the maintenance of appropriate barrier function and host-microbiota homeostasis in the large intestine. J. Cell. Physiol. 231: 2529-2540, 2016. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Colo/patologia , Homeostase , Inflamação/patologia , Inflamação/prevenção & controle , Microbiota , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Animais Recém-Nascidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Biomarcadores/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Inflamação/genética , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Regulação para Cima/genética
4.
Food Funct ; 7(3): 1634-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26931486

RESUMO

Green tea polyphenols are recognized for their antioxidant properties and their effects on lipid digestion kinetics. Polyphenols are sensitive to degradation in the intestinal environment. Interactions with dairy proteins could modulate the stability and biological activity of polyphenols during digestion. The objective of this study was to evaluate the release of nutrients (polyphenols, fatty acids and peptides) and the antioxidant activity in polyphenol-enriched cheese containing different levels of calcium in a simulated gastrointestinal environment. The relationship between cheese matrix texture, matrix degradation and nutrient release during digestion was also studied. Green tea extract was added to milk at 0% or 0.1%, and cheeses were produced on a laboratory scale. The level of available calcium was adjusted to low (Ca(low)), regular (Ca(reg)) or high (Ca(high)) during the salting step of the cheese-making process. Cheeses were subjected to simulated digestion. The rate and extent of fatty acid release were 21% lower for Ca(low) cheese than for Ca(reg) and Ca(high) cheeses. The greater adhesiveness of Ca(low) cheese, which resulted in lower rates of matrix degradation and proteolysis, contributed to the reduced rate of lipolysis. The presence of green tea extract in cheese reduced the release of free fatty acids at the end of digestion by 7%. The addition of green tea extract increased cheese hardness but did not influence matrix degradation or proteolysis profiles. The formation of complexes between tea polyphenols and proteins within the cheese matrix resulted in a more than twofold increase in polyphenol recovery in the intestinal phase compared with the control (tea polyphenol extract incubated with polyphenol-free cheese). Antioxidant activity was 14% higher in the digest from polyphenol-enriched cheese than in the control. These results suggest that cheese is an effective matrix for the controlled release of nutrients and for the protection of green tea polyphenol integrity and biological activity in the gastrointestinal environment.


Assuntos
Antioxidantes/metabolismo , Queijo/análise , Digestão , Aditivos Alimentares/metabolismo , Trato Gastrointestinal/metabolismo , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Antioxidantes/química , Cálcio/química , Cálcio/metabolismo , Aditivos Alimentares/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Extratos Vegetais/química , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA