Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Artif Intell ; 7: 1366055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774832

RESUMO

Background: Major Depressive Disorder (MDD) is a prevalent mental health condition characterized by persistent low mood, cognitive and physical symptoms, anhedonia (loss of interest in activities), and suicidal ideation. The World Health Organization (WHO) predicts depression will become the leading cause of disability by 2030. While biological markers remain essential for understanding MDD's pathophysiology, recent advancements in social signal processing and environmental monitoring hold promise. Wearable technologies, including smartwatches and air purifiers with environmental sensors, can generate valuable digital biomarkers for depression assessment in real-world settings. Integrating these with existing physical, psychopathological, and other indices (autoimmune, inflammatory, neuroradiological) has the potential to improve MDD recurrence prevention strategies. Methods: This prospective, randomized, interventional, and non-pharmacological integrated study aims to evaluate digital and environmental biomarkers in adolescents and young adults diagnosed with MDD who are currently taking medication. The study implements a sensor-integrated platform built around an open-source "Pothos" air purifier system. This platform is designed for scalability and integration with third-party devices. It accomplishes this through software interfaces, a dedicated app, sensor signal pre-processing, and an embedded deep learning AI system. The study will enroll two experimental groups (10 adolescents and 30 young adults each). Within each group, participants will be randomly allocated to Group A or Group B. Only Group B will receive the technological equipment (Pothos system and smartwatch) for collecting digital biomarkers. Blood and saliva samples will be collected at baseline (T0) and endpoint (T1) to assess inflammatory markers and cortisol levels. Results: Following initial age-based stratification, the sample will undergo detailed classification at the 6-month follow-up based on remission status. Digital and environmental biomarker data will be analyzed to explore intricate relationships between these markers, depression symptoms, disease progression, and early signs of illness. Conclusion: This study seeks to validate an AI tool for enhancing early MDD clinical management, implement an AI solution for continuous data processing, and establish an AI infrastructure for managing healthcare Big Data. Integrating innovative psychophysical assessment tools into clinical practice holds significant promise for improving diagnostic accuracy and developing more specific digital devices for comprehensive mental health evaluation.

2.
Front Pediatr ; 11: 1169651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397142

RESUMO

Introduction: The intestinal microbiome forms a major reservoir for antibiotic resistance genes (ARGs). Little is known about the neonatal intestinal resistome. Objective: The objective of this study was to investigate the intestinal resistome and factors that influence the abundance of ARGs in a large cohort of neonates. Methods: Shotgun metagenomics was used to analyse the resistome in stool samples collected at 1 week of age from 390 healthy, term-born neonates who did not receive antibiotics. Results: Overall, 913 ARGs belonging to 27 classes were identified. The most abundant ARGs were those conferring resistance to tetracyclines, quaternary ammonium compounds, and macrolide-lincosamide-streptogramin-B. Phylogenetic composition was strongly associated with the resistome composition. Other factors that were associated with the abundance of ARGs were delivery mode, gestational age, birth weight, feeding method, and antibiotics in the last trimester of pregnancy. Sex, ethnicity, probiotic use during pregnancy, and intrapartum antibiotics had little effect on the abundance of ARGs. Conclusion: Even in the absence of direct antibiotic exposure, the neonatal intestine harbours a high abundance and a variety of ARGs.

3.
Sci Rep ; 12(1): 14963, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056144

RESUMO

Staphylococcus aureus adapts to different environments by sensing and responding to diverse environmental cues. The responses are coordinately regulated by regulatory proteins, and small regulatory RNAs at the transcriptional and translational levels. Here, we characterized teg58, a SarA repressed sRNA, using ChIP-Seq and RNA-Seq analysis of a sarA mutant. Phenotypic and genetic analyses indicated that inactivation of teg58 led to reduced biofilm formation in a process that is independent of SarA, agr, PIA, and PSMs. RNA-Seq analysis of teg58 mutant revealed up-regulation of arginine biosynthesis genes (i.e., argGH) as well as the ability of the mutant to grow in a chemical defined medium (CDM) lacking L-arginine. Exogenous L-arginine or endogenous induction of argGH led to decreased biofilm formation in parental strains. Further analysis in vitro and in vivo demonstrated that the specific interaction between teg58 and the argGH occurred at the post-transcriptional level to repress arginine synthesis. Biochemical and genetic analyses of various arginine catabolic pathway genes demonstrated that the catabolic pathway did not play a significant role in reduced biofilm formation in the teg58 mutant. Overall, results suggest that teg58 is a regulatory sRNA that plays an important role in modulating arginine biosynthesis and biofilm formation in S. aureus.


Assuntos
Pequeno RNA não Traduzido , Infecções Estafilocócicas , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Infecções Estafilocócicas/genética , Staphylococcus aureus/fisiologia , Transativadores/metabolismo
4.
Clin Microbiol Infect ; 28(12): 1539-1546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35868586

RESUMO

BACKGROUND: The intestinal microbiome provides a reservoir for antibiotic resistance genes (ARGs). The neonatal microbiome is more susceptible to disturbance from external factors than the established microbiome in later life. OBJECTIVES: In this review, we systematically summarize studies which investigated the intestinal resistome in neonates. DATA SOURCES: MEDLINE and Embase databases were searched. STUDY ELIGIBILITY CRITERIA: We included original studies which investigated ARGs in stool or rectal swabs in neonates using molecular diagnostics. METHODS OF DATA SYNTHESIS: Two authors independently extracted data, which were summarized in tables. RESULTS: Our search identified 2701 studies, of which 23 (22 cohorts) were included. The studies show that the neonatal intestine harbours a high abundance and variety of ARGs, even in the absence of direct antibiotic exposure. The most commonly found ARGs confer resistance to aminoglycosides, ß-lactams, macrolides, tetracyclines, or multidrug resistance. There is evidence that ARGs can be transferred from mothers to neonates. Interestingly, however, compared to mothers, neonates are reported to have a higher abundance of ARGs. One likely reason for this is the bacterial phylogenetic composition with a high abundance of Gammaproteobacteria in neonatal stool. Factors that have been associated with a higher abundance of ARGs are intrapartum and neonatal antibiotic use. Breastfeeding and neonatal probiotic use have been associated with a lower abundance of ARGs. Antibiotics during pregnancy, delivery mode, or sex are reported to have little effect. However, this might be because studies were underpowered and because it is difficult to account for effect modifiers. CONCLUSIONS: The neonatal intestine seems to have a lower colonization resistance, which could make it easier for antibiotic-resistant populations to establish themselves. Future studies will help in the development of evidence-based interventions to modulate the abundance of ARGs in neonates, for example, by the use of pre- and probiotics and bacteriophages.


Assuntos
Antibacterianos , Bactérias , Recém-Nascido , Gravidez , Feminino , Humanos , Filogenia , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Intestinos
6.
BMC Genomics ; 22(1): 771, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711176

RESUMO

BACKGROUND: Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. RESULTS: The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14-29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. CONCLUSION: Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Temperatura Baixa , Drosophila melanogaster/genética , Sequências Reguladoras de Ácido Nucleico , Temperatura
7.
EBioMedicine ; 71: 103566, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34492446

RESUMO

BACKGROUND: Shortening antibiotic-treatment durations is a key recommendation of antibiotic-stewardship programmes, yet it is based on weak evidence. We investigated whether halving antibiotic courses would reduce antibiotic-resistance genes (ARG) in the intestinal microbiomes of patients treated for gram-negative bacteraemia. METHODS: This nested prospective cohort study included adult patients hospitalized at Geneva University Hospitals (Switzerland) participating in the PIRATE randomized trial assessing non-inferiority of shorter antibiotic courses (7 versus 14 days) for gram-negative bacteraemia ('cases') and, simultaneously, hospitalized patients with similar demography and comorbidity yet no antibiotic therapy ('controls'). Stool was collected from case and control patients on days 7, 14, 30 and 90 after antibiotic initiation (day 1) and days 7 and 14 after admission, respectively, and analysed by whole-metagenome shotgun sequencing. The primary outcome was ARG abundance at day 30; secondary outcomes included microbiota-species composition and clustering over time. FINDINGS: Forty-five patients and 11 controls were included and evaluable; ARG analyses were conducted on the 29 per-protocol patients receiving 7 (±2) days or 14 (±3) days of antibiotic therapy. At day 30, ARGs were not detected at similar abundance in patients receiving 7 and 14 days (median counts/million [mCPM]: 96 versus [vs] 71; p=.38). By day 30, total ARG content between both groups was not significantly different from that of controls at D7 (362 and 370 mCPM vs 314 mCPM, p=.24 and 0.19). There were no significant differences amongst antibiotic-treated patients at any timepoint in bacterial diversity or clustering, but Shannon species diversity was significantly reduced compared to controls through day 14 (median 3.12 and 3.24 in the 7-day and 14-day groups vs 3.61 [controls]; p=.04 and 0.012). Patients treated for 14 days had reduced faecal phage content during and after therapy compared to other patient groups. INTERPRETATION: Reducing antibiotic durations by half did not result in decreased abundance of ARGs in patients treated for gram-negative bacteraemia, nor did it improve microbiota species diversity. FUNDING: The study was funded by the University of Geneva's Louis-Jeantet Foundation (grant no. S04_12) and the Swiss National Science Foundation (NRP Smarter Healthcare, grant no. 407,440_167359).


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Esquema de Medicação , Microbioma Gastrointestinal/genética , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Metagenoma/efeitos dos fármacos , Metagenoma/genética
8.
Drugs ; 81(13): 1453-1466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328626

RESUMO

Clinical metagenomics (CMg) is the process of sequencing nucleic acid of clinical samples to obtain clinically relevant information such as the identification of microorganisms and their susceptibility to antimicrobials. Over the last decades, sequencing and bioinformatic solutions supporting CMg have much evolved and an increasing number of case reports and series covering various infectious diseases have been published. Metagenomics is a new approach to infectious disease diagnosis that is currently being developed and is certainly one of the most promising for the coming years. However, most CMg studies are retrospective, and few address the potential impact CMg could have on patient management, including initiation, adaptation, or cessation of antimicrobials. In this narrative review, we have discussed the potential role of CMg in bacteriology, virology, mycology, and parasitology. Several reports and case-series confirm that CMg is an innovative tool with which one can (i) identify more microorganisms than with conventional methods in a single test, (ii) obtain results within hours, and (iii) tailor the antimicrobial regimen of patients. However, the cost-efficiency of CMg and its real impact on patient management are still to be determined.


Assuntos
Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/tratamento farmacológico , Biologia Computacional/métodos , Metagenômica/métodos , Doenças Transmissíveis/microbiologia , Humanos , Técnicas de Amplificação de Ácido Nucleico
9.
JMIRx Med ; 2(2): e21269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34032814

RESUMO

BACKGROUND: As COVID-19 infections worldwide exceed 6 million confirmed cases, the data reveal that the first wave of the outbreak is coming to an end in many European countries. There is variation in the testing strategies (eg, massive testing vs testing only those displaying symptoms) and the strictness of lockdowns imposed by countries around the world. For example, Brazil's mitigation measures lie between the strict lockdowns imposed by many European countries and the more liberal approach taken by Sweden. This can influence COVID-19 metrics (eg, total deaths, confirmed cases) in unexpected ways. OBJECTIVE: This study aimed to evaluate the effectiveness of local authorities' strategies in managing the COVID-19 pandemic in Europe, South America, and the United States. METHODS: The early stage of the COVID-19 outbreak in Brazil was compared to Europe using the weekly transmission rate. Using the European data as a basis for our analysis, we examined the spread of COVID-19 and modeled curves pertaining to daily confirmed cases and deaths per million using skew-normal probability density functions. For Sweden, the United Kingdom, and the United States, we forecasted the end of the pandemic, and for Brazil, we predicted the peak value for daily deaths per million. We also discussed additional factors that could play an important role in the fight against COVID-19, such as the fast response of local authorities, testing strategies, number of beds in the intensive care unit, and isolation strategies adopted. RESULTS: The European data analysis demonstrated that the transmission rate of COVID-19 increased similarly for all countries in the initial stage of the pandemic but changed as the total confirmed cases per million in each country grew. This was caused by the variation in timely action by local authorities in adopting isolation measures and/or massive testing strategies. The behavior of daily confirmed cases for the United States and Brazil during the early stage of the outbreak was similar to that of Italy and Sweden, respectively. For daily deaths per million, transmission in the United States was similar to that of Switzerland, whereas for Brazil, it was greater than the counts for Portugal, Germany, and Austria (which had, in terms of total deaths per million, the best results in Europe) but lower than other European countries. CONCLUSIONS: The fitting skew parameters used to model the curves for daily confirmed cases per million and daily deaths per million allow for a more realistic prediction of the end of the pandemic and permit us to compare the mitigation measures adopted by local authorities by analyzing their respective skew-normal parameters. The massive testing strategy adopted in the early stage of the pandemic by German authorities made a positive difference compared to other countries like Italy where an effective testing strategy was adopted too late. This explains why, despite a strictly indiscriminate lockdown, Italy's mortality rate was one of the highest in the world.

11.
Front Cell Infect Microbiol ; 10: 582028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330127

RESUMO

Clinical microbiology laboratories are the first line to combat and handle infectious diseases and antibiotic resistance, including newly emerging ones. Although most clinical laboratories still rely on conventional methods, a cascade of technological changes, driven by digital imaging and high-throughput sequencing, will revolutionize the management of clinical diagnostics for direct detection of bacteria and swift antimicrobial susceptibility testing. Importantly, such technological advancements occur in the golden age of machine learning where computers are no longer acting passively in data mining, but once trained, can also help physicians in making decisions for diagnostics and optimal treatment administration. The further potential of physically integrating new technologies in an automation chain, combined to machine-learning-based software for data analyses, is seducing and would indeed lead to a faster management in infectious diseases. However, if, from one side, technological advancement would achieve a better performance than conventional methods, on the other side, this evolution challenges clinicians in terms of data interpretation and impacts the entire hospital personnel organization and management. In this mini review, we discuss such technological achievements offering practical examples of their operability but also their limitations and potential issues that their implementation could rise in clinical microbiology laboratories.


Assuntos
Doenças Transmissíveis , Testes Diagnósticos de Rotina , Automação , Bactérias , Doenças Transmissíveis/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiologia
12.
Vaccine ; 38(33): 5324-5331, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32561121

RESUMO

Invasive meningococcal disease (IMD), caused by Neisseria meningitidis (Nm) strains, is a life-threatening but vaccine-preventable condition. Bexsero is a four-component vaccine that offers broad protection against Nm of serogroup B (NmB), particularly common in Europe. In Switzerland, Bexsero has not yet been licensed and no information is available concerning the predicted vaccine coverage on isolates of circulating Nm. We performed genotyping of Bexsero antigen loci by whole-genome sequencing (WGS) on 104 NmB collected in Switzerland in the 2010-2015 period. We searched for antigen variants previously defined as predictors of strain coverage and estimated that 50% of IMD NmB strains were potentially covered by the vaccine. Clonal complexes (cc) 32, 41/44 and 269, considered the best covered lineages, were further sub-typed according to Bexsero Antigen Sequence Type (BAST) scheme. We also genotyped by WGS 40 Nm of serogroup W (NmW) collected in the country between 2010 and 2016. NmW cc22 isolates appeared to be covered by the vaccine, which was not the case for cc11 isolates, whose incidence has recently increased in Switzerland and all over Europe. Our work underlines the benefit of using WGS for surveillance of vaccine antigen variant distribution in local Nm population and taking proper measures to prevent the spread of NmB.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Antígenos de Bactérias , Europa (Continente) , Humanos , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis Sorogrupo B/genética , Sorogrupo , Suíça
13.
Microorganisms ; 8(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585945

RESUMO

Background: The R-GNOSIS (Resistance in Gram-Negative Organisms: Studying Intervention Strategies) WP3 study was the first multicenter randomized clinical trial systematically investigating fecal microbiota transplantation (FMT) for intestinal decolonization of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) or carbapenemase-producing Enterobacteriaceae (CPE). Here, we characterized the temporal dynamics of fecal microbiota changes in a sub-cohort of the R-GNOSIS WP3 participants before and after antibiotics/FMT using whole metagenome shotgun sequencing. Methods: We sequenced fecal DNA obtained from 16 ESBL-E/CPE carriers having received oral colistin/neomycin followed by FMT and their corresponding seven donors. Ten treatment-naïve controls from the same trial were included. Fecal samples were collected at baseline (V0), after antibiotics but before FMT (V2) and three times after FMT (V3, V4 and V5). Results: Antibiotic treatment transiently decreased species richness and diversity and increased the abundance of antibiotic resistance determinants (ARDs). Bifidobacterium species, together with butyrate- and propionate-producing species from Lachnospiraceae and Ruminococcaceae families were significantly enriched in post-FMT microbiota of treated carriers. After FMT, the proportion of Enterobacteriaceae was lower compared to baseline but without statistical significance. Conclusions: Combined antibiotic and FMT treatment resulted in enrichment of species that are likely to limit the gut colonization by ESBL-E/CPE.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32185143

RESUMO

Introduction: Fecal microbiota transplantation (FMT) is recommended as safe and effective treatment for recurrent Clostridioides difficile infections. Freezing the FMT preparation simplifies the process, allowing a single stool sample to be used for multiple receivers and over an extended period of time. We aimed to assess the effect of long-term frozen storage on bacterial taxonomic profiles of a stool suspension prepared for FMT. Methods: DNA was extracted from a stool suspension before freezing and sequentially during the 18-month storage period at -80°C. Two different protocols were used for DNA extraction. The first relied on a classical mechanical and chemical cell disruption to extract both intra- and extracellular DNA; the second included specific pre-treatments aimed at removing free DNA and DNA from human and damaged bacterial cells. Taxonomic profiling of bacterial communities was performed by sequencing of V3-V4 16S rRNA gene amplicons. Results: Microbiota profiles obtained by whole DNA extraction procedure remained relatively stable during frozen storage. When DNA extraction procedure included specific pre-treatments, microbiota similarity between fresh and frozen samples progressively decreased with longer frozen storage times; notably, the abundance of Bacteroidetes decreased in a storage duration-dependent manner. The abundance of Firmicutes, the main butyrate producers in the colon, were not much affected by frozen storage for up to 1 year. Conclusion: Our data show that metataxonomic analysis of frozen stool suspensions subjected to specific pre-treatments prior to DNA extractions might provide an interesting indication of bacterial resistance to stress conditions and thus of chances of survival in FMT recipients.


Assuntos
Bactérias/classificação , Bacteroidetes/genética , Fezes/microbiologia , Firmicutes/genética , Microbiota , Bactérias/isolamento & purificação , Bacteroidetes/isolamento & purificação , Criopreservação/métodos , DNA Bacteriano/genética , Transplante de Microbiota Fecal , Firmicutes/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Manejo de Espécimes/métodos , Suspensões , Fatores de Tempo
16.
Front Microbiol ; 11: 591093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424794

RESUMO

Whole genome sequencing (WGS) enables high resolution typing of bacteria up to the single nucleotide polymorphism (SNP) level. WGS is used in clinical microbiology laboratories for infection control, molecular surveillance and outbreak analyses. Given the large palette of WGS reagents and bioinformatics tools, the Swiss clinical bacteriology community decided to conduct a ring trial (RT) to foster harmonization of NGS-based bacterial typing. The RT aimed at assessing methicillin-susceptible Staphylococcus aureus strain relatedness from WGS and epidemiological data. The RT was designed to disentangle the variability arising from differences in sample preparation, SNP calling and phylogenetic methods. Nine laboratories participated. The resulting phylogenetic tree and cluster identification were highly reproducible across the laboratories. Cluster interpretation was, however, more laboratory dependent, suggesting that an increased sharing of expertise across laboratories would contribute to further harmonization of practices. More detailed bioinformatic analyses unveiled that while similar clusters were found across laboratories, these were actually based on different sets of SNPs, differentially retained after sample preparation and SNP calling procedures. Despite this, the observed number of SNP differences between pairs of strains, an important criterion to determine strain relatedness given epidemiological information, was similar across pipelines for closely related strains when restricting SNP calls to a common core genome defined by S. aureus cgMLST schema. The lessons learned from this pilot study will serve the implementation of larger-scale RT, as a mean to have regular external quality assessments for laboratories performing WGS analyses in a clinical setting.

17.
Cell Rep ; 29(2): 378-390.e4, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597098

RESUMO

Multiple sclerosis (MS) is a common autoimmune disease of the CNS. Although an association between MS and inflammatory bowel diseases is observed, the link connecting intestinal immune responses and neuroinflammation remains unclear. Here we show that encephalitogenic Th17 cells infiltrate the colonic lamina propria before neurological symptom development in two murine MS models, active and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Specifically targeting Th17 cell intestinal homing by blocking the α4ß7-integrin and its ligand MAdCAM-1 pathway impairs T cell migration to the large intestine and dampens EAE severity in the Th17 cell adoptive transfer model. Mechanistically, myelin-specific Th17 cells proliferate in the colon and affect gut microbiota composition. The beneficial effect of blocking the α4ß7-integrin and its ligand MAdCAM-1 pathway on EAE is interdependent with gut microbiota. Those results show that disrupting myelin-specific Th17 cell trafficking to the large intestine harnesses neuroinflammation and suggests that the gut environment and microbiota catalyze the encephalitogenic properties of Th17 cells.


Assuntos
Transferência Adotiva , Colo/patologia , Encefalomielite Autoimune Experimental/imunologia , Bainha de Mielina/metabolismo , Células Th17/imunologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antígenos/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Proliferação de Células , Sistema Nervoso Central/patologia , Colo/irrigação sanguínea , Colo/imunologia , Modelos Animais de Doenças , Progressão da Doença , Disbiose/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Integrinas/metabolismo , Ligantes , Vasos Linfáticos/patologia , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Mucosa/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
18.
Front Cardiovasc Med ; 6: 112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448292

RESUMO

The most common causes of infective endocarditis (IE) are Staphylococcus, Streptococcus, Enterococcus, and HACEK-related organisms. In 15-30% of the IE cases, standard blood cultures remain sterile. We aimed at identifying the causative agent of a blood-culture-negative IE by whole metagenome shotgun sequencing (WMGS). A 54-year old woman diagnosed with community-onset pneumonia by a general practitioner, was admitted with dyspnea, cough and fever. The patient's blood cultures were repeatedly negative. The transesophageal echocardiography and transthoracic echocardiography showed an echo density on the left coronary leaflet of the aortic valve and signs suggestive of a ruptured abscess of the mitro-aortic junction. The patient underwent a semi-urgent aortic valve replacement by a mechanical prosthetic valve. We extracted DNA from the surgically-removed fresh valve tissue. The extraction procedure included bacterial/fungal DNA enrichment procedure. Nextera XT library prepared from the valve DNA extract was sequenced (2 × 250) on an Illumina MiSeq instrument. Sequence reads were mapped against bacterial genomic sequences, 16S rRNA genes and clade-specific taxonomic markers. Most of the 103,136 sequencing reads classified as bacterial were assigned to Neisseria meningitidis. In line with these data, mapping of reads against clade-specific and 16S rRNA gene markers revealed N. meningitidis as the most represented species. Assembled metagenomic fragments had the best average nucleotide identity (ANI) with N. meningitidis. Comparison of assembled contigs to reference alleles showed that this strain belongs to the ST-41/44 complex. N. meningitidis is commonly associated with meningitis and/or septicemia but should not be neglected as a causative agent of IE, which became exceedingly rare with the introduction of antibiotics. Our data show that WMGS may be used as a diagnostic procedure to strengthen the diagnosis of IE and to obtain draft genomic sequence of the pathogen and typing information.

19.
Intensive Care Med ; 45(8): 1082-1092, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31209523

RESUMO

PURPOSE: To compare bacteria recovered by standard cultures and metataxonomics, particularly with regard to ventilator-associated pneumonia (VAP) pathogens, and to determine if the presence of particular bacteria or microbiota in tracheal and oropharyngeal secretions during the course of intubation was associated with the development of VAP. METHODS: In this case-control study, oropharyngeal secretions and endotracheal aspirate were collected daily in mechanically ventilated patients. Culture and metataxonomics (16S rRNA gene-based taxonomic profiling of bacterial communities) were performed on serial upper respiratory samples from patients with late-onset definite VAP and their respective controls. RESULTS: Metataxonomic analyses showed that a low relative abundance of Bacilli at the time of intubation in the oropharyngeal secretions was strongly associated with the subsequent development of VAP. On the day of VAP, the quantity of human and bacterial DNA in both tracheal and oropharyngeal secretions was significantly higher in patients with VAP than in matched controls with similar ventilation times. Molecular techniques identified the pathogen(s) of VAP found by culture, but also many more bacteria, classically difficult to culture, such as Mycoplasma spp. and anaerobes. CONCLUSIONS: Molecular analyses of respiratory specimens identified markers associated with the development of VAP, as well as important differences in the taxa abundance between VAP and controls. Further prospective trials are needed to test the predictive value of these markers, as well as the relevance of uncultured bacteria in the pathogenesis of VAP.


Assuntos
Biomarcadores/análise , Microbiota , Pneumonia Associada à Ventilação Mecânica/microbiologia , APACHE , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Técnicas de Cultura/instrumentação , Técnicas de Cultura/métodos , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Masculino , Pessoa de Meia-Idade , Orofaringe/microbiologia , Pneumonia Associada à Ventilação Mecânica/mortalidade , Estudos Prospectivos , RNA Ribossômico 16S/análise , Respiração Artificial/efeitos adversos , Suíça , Traqueia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA