Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Chemosphere ; 362: 142764, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969220

RESUMO

Microbially mediated Fe(II) oxidation has a great potential for attenuating arsenic (As) mobility in an anoxic groundwaters. Green rust (GR), a common Fe(II)-bearing phase in such environments, could be easily oxidized into Fe (oxyhydr)oxides through microbial activity. This study focused on Acidovorax sp. strain BoFeN1, an anaerobic nitrate-reducing Fe(II)-oxidizing (NRFO) bacterium, to promote the transformation of GR. In biotic GR transformation experiments, magnetite formation occurred at [As]ini = 5 mg/L while lepidocrocite and goethite were formed at [As]ini = 10 mg/L. In the absence of bacterium, the GR persisted throughout the 120-h experiment. Meanwhile, with the addition of strain BoFeN1, the final aqueous As concentration significantly decreased from 0.237 to 0.004 mg/L (C0 = 5 mg/L) and from 1.457 to 0.096 mg/L (C0 = 10 mg/L) at 120 h. It was indicated that strain BoFeN1 played a crucial role in promoting the GR transformation and enhancing As immobilization. Further investigations revealed that the role of strain BoFeN1 extended beyond Fe-oxidation. With nitrite (the intermediate of nitrate bioreduction) as oxidizer, lepidocrocite/goethite were formed in the chemical-oxidation system, excluding magnetite. In the Bio - [As]ini = 5 mg/L, the occurrence of lepidocrocite via the bio-oxidation of Fe(II) in GR at 24 h, along with the metabolism of strain BoFeN1 reducing nitrate accompanied with H+ consumption, it should be reasonably deduced that the alkaline micro-environment of periplasm induced by strain BoFeN1 were vital for the transformation of lepidocrocite to magnetite triggered by trace Fe(II). However, in the Bio - [As]ini = 10 mg/L, more As adsorbed on GR inhibiting the adsorption of bacterium, so the alkaline micro-environment had no obvious effect on such transformation. This study helps to understand the interdependence between GR and anaerobic NRFO bacterium, and provides a new perspective for more effective As remediation strategies in anoxic groundwaters.

2.
J Environ Manage ; 363: 121419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852405

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) were frequently found in sediment and were primarily treated through microbial degradation. Thus, efficient management of PAH pollution requires exploring the molecular degradation mechanisms of PAHs and expanding the pool of available microbial resources. A fungus (identified as Sarocladium terricola strain RCEF778) with the remarkable ability to degrade pyrene was screened from sediment near a petrochemical plant, and its growth and pyrene degradation characteristics were comprehensively investigated. The results showed that the fungus exhibited great effectiveness in pyrene degradation, with a degradation ratio of 88.97% at 21 days at the conditions: 35 °C, pH 7, 10 mg L-1 initially pyrene concentration, 3% supplementary salt, and glucose supplementation. The generation and concentration variation of the intermediate products were identified, and the results revealed that the fungus degraded pyrene through two pathways: by salicylic acid and by phthalic acid. Three sediments (M1, M2, M3), each exhibiting different levels of PAH pollution, were employed to examine the effectiveness of fungal degradation of PAHs in practical sediment samples. These data showed that with the fungus, the degradation ratios ranged from 13.64% to 23.50% for 2-3 rings PAHs, 40.93%-49.41% for 4 rings PAHs, and 39.59%-48.07% for 5-6 rings PAHs, which were significantly higher than those for the sediment without the fungus and confirmed the excellent performance of the fungal. Moreover, the Gompertz model was employed to analyze the degradation kinetics of 4-rings and 5-6 rings PAHs in these sediments, and the results demonstrated that the addition of the fungus could significantly increase the maximum degradation ratio, degradation start-up rate and maximum degradation rate of 4-rings and 5-6 rings PAHs and shorten the time required to reach the maximum degradation rate. This study not only supplied fungal materials but also established crucial theoretical foundations for the development of bioremediation technologies aimed at high molecular weight PAH-contaminated sediments.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiologia , Pirenos/metabolismo
3.
Sci Total Environ ; 946: 173946, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38909815

RESUMO

Arsenic (As) cycling in groundwater is commonly coupled to the biogeochemical cycling of iron (Fe) and the associated transformation of Fe minerals present. Numerous laboratory studies suggested that Fe minerals can act as nucleation sites for further crystal growth and as catalysts for abiotic Fe(II) oxidation. In view of the widespread existence of magnetite in anoxic environments where As is often dissolved, we firstly exploited magnetite to enhance As immobilization during nitrate-reducing Fe(II) oxidation (NRFO) induced by Acidovorax sp. strain BoFeN1, a mixotrophic nitrate-reducing Fe(II)-oxidizing bacterium that can oxidize Fe(II) through both enzymatic and abiotic pathways. Subsequently, we investigated how magnetite affects NRFO and As immobilization. Results demonstrated a significant increase in As(III) removal efficiency from 75.4 % to 97.2 % with magnetite, attributed to the higher amount of NRFO and As(III) oxidation promoted by magnetite. It was found that magnetite stimulated the production of extracellular polymeric substances (EPS), which could decrease the diffusion of nitrate in the periplasm of bacteria and shield them against encrustation, resulting in a more rapid reduction of nitrate in the system with magnetite than that without magnetite. Meanwhile, Fe(II) was almost completely oxidized in the presence of magnetite during the whole 72 h experiment, while in the absence of magnetite, 47.7 % of Fe(II) remained, indicating that magnetite could obviously accelerate the chemical oxidation of Fe(II) with nitrite (the intermediates of nitrate bioreduction). Furthermore, the formation of labile Fe(III), an intermediate product of electron transfer between Fe(II) and magnetite, was reasonably deduced to be vital for anoxic As(III) oxidation. Additionally, the XPS analysis of the solid phase confirmed the oxidation of 43.8 % of As(III) to As(V). This study helps to understand the biogeochemical cycling of Fe and As in the environment, and provides a cost-effective and environmentally friendly option for in situ remediation of As-contaminated groundwater.


Assuntos
Arsênio , Comamonadaceae , Óxido Ferroso-Férrico , Nitratos , Oxirredução , Poluentes Químicos da Água , Nitratos/metabolismo , Comamonadaceae/metabolismo , Óxido Ferroso-Férrico/metabolismo , Poluentes Químicos da Água/metabolismo , Arsênio/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Ferro/química
4.
Anal Chem ; 96(21): 8689-8695, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748889

RESUMO

Tumor microenvironment-responsive phototheranostic agents are highly sought after for their ability to improve diagnostic accuracy and treatment specificity. Here, we introduce a novel single-molecule probe, POZ-NO, which is activated by nitric oxide (NO) and weak acidity, enabling dual-mode imaging and photothermal therapy (PTT) of tumors. In acidic environments with elevated NO levels, POZ-NO exhibits a distinctive ratiometric fluorescence signal shift from the red to near-infrared, accompanied by a 700 nm photoacoustic signal. Additionally, POZ-NO demonstrated potent photothermal effects upon NO and acidity activation, achieving an impressive conversion efficiency of 74.3% under 735 nm laser irradiation. In vivo studies confirm POZ-NO's ability to accurately image tumors through ratiometric fluorescence and photoacoustic modes while selectively treating tumors with PTT.


Assuntos
Óxido Nítrico , Técnicas Fotoacústicas , Terapia Fototérmica , Microambiente Tumoral , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animais , Humanos , Camundongos , Imagem Óptica , Concentração de Íons de Hidrogênio , Nanomedicina Teranóstica , Camundongos Endogâmicos BALB C , Feminino , Corantes Fluorescentes/química , Fluorescência
5.
Water Sci Technol ; 89(9): 2311-2325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747951

RESUMO

Rational disposal of sludge is an ongoing concern. This work is the first attempt for in-depth statistical analysis of anaerobic digestion (AD) research in recent three decades (1986-2022) using both quantitative and qualitative approaches in bibliometrics to investigate the research progress, trends and hot spots. All publications in the Web of Science Core Collection database from 1986 to April 4, 2022 were analyzed. Results showed that the research on AD started in 1999 and the number of papers significantly increased since 2012. The research about the disposal of sewage sludge mainly focuses on energy recovery (e.g. methane and short chain volatile organic acids) by AD. Besides, different pretreatment technologies were studied in this study to eliminate the negative effects on the disposal of sludge caused by hydrolysis (rate-limiting step of AD), water content (increasing the costs) and heavy metal (toxic to the environment) of sludge. Of those, the treatment technologies related to direct interspecies electron transfer were worth further studied in the future. Towards that end, iron conductive material, iron-based advanced oxidation and biological treatment were concluded as the prospective technologies and worth to further study.


Assuntos
Bibliometria , Esgotos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos
6.
Chemosphere ; 355: 141822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561157

RESUMO

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Compostos Organofosforados/análise , Retardadores de Chama/análise , Exposição Ambiental/análise , Fosfatos/análise , Qualidade da Água , Organofosfatos/análise
7.
J Environ Manage ; 356: 120694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522271

RESUMO

Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 µM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 µM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 µM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 µM Se increased Sb content in roots by 42.57%, and 1 µM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 µM Se under SbIII and 2 µM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.


Assuntos
Boehmeria , Selênio , Antioxidantes/farmacologia , Antimônio , Selênio/farmacologia , Boehmeria/fisiologia , Raízes de Plantas/química
8.
Environ Sci Pollut Res Int ; 31(17): 25659-25670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483714

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.


Assuntos
Alphaproteobacteria , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Rizosfera , Pirenos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Alphaproteobacteria/metabolismo , Fenóis
9.
Sci Total Environ ; 924: 171545, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458454

RESUMO

Microplastics (MPs) commonly coexist with heavy metals in the soil environment. MPs can influence the activity of heavy metals, and the specific mechanisms need to be further explored. Here, different contents of polystyrene (PS) MPs were added to soil to explore their effects on the adsorption and desorption characteristics of copper (Cu2+) in soil. The adsorption process was mainly chemical adsorption and belonged to a spontaneous, endothermic reaction. The hydrophobicity of MPs slowed down the adsorption and desorption rates. The main adsorption mechanisms included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+. These findings provide new insights into the effects of MPs on the fate and risk of heavy metals in soil. ENVIRONMENTAL IMPLICATION: The existing literature concerning the effects of microplastics on the adsorption of heavy metals in soil is insufficient. Our investigation unveiled that the main adsorption mechanisms of different soil samples included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+.

10.
Environ Pollut ; 346: 123536, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365079

RESUMO

The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.


Assuntos
Acetonitrilas , Hidrato de Cloral/análogos & derivados , Desinfetantes , Piscinas , Triazinas , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Clorofórmio , Ácido Tricloroacético , Trialometanos/análise , Cloro , Halogenação , Purificação da Água/métodos , Poluentes Químicos da Água/análise
11.
Anal Chem ; 95(50): 18619-18628, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38054238

RESUMO

Nonalcoholic fatty liver disease (NAFLD) can progress to cirrhosis and liver cancer if left untreated. Therefore, it is of great importance to develop useful tools for the noninvasive and accurate diagnosis of NAFLD. Increased microenvironmental viscosity was considered as a biomarker of NAFLD, but the occurrence of increased viscosity in other liver diseases highly reduces the diagnosis accuracy of NAFLD by a single detection of viscosity. Hence, it is very necessary to seek a second biomarker of NAFLD. It has been innovatively proposed that the overexpressed heme oxygenase-1 enzyme in NAFLD would produce abnormally high concentrations of CO in hepatocytes and that CO could serve as a potential biomarker. In this work, we screened nine lactam Changsha dyes (HCO-1-HCO-9) with delicate structures to obtain near-infrared (NIR), metal-free, and "dual-locked" fluorescent probes for the simultaneous detection of CO and viscosity. Changsha dyes with a 2-pyridinyl hydrazone substituent could sense CO, and the 5-position substituents on the 2-pyridinyl moiety had a great electron effect on the reaction rate. The double bond in these dyes served as the sensing group for viscosity. Probe HCO-9 was utilized for precise diagnosis of NAFLD by simultaneous detection of CO and viscosity. Upon reacting with CO in a high-viscosity microenvironment, strong fluorescence at 745 nm of probe HCO-9 was turned on with NIR excitation at 700 nm. Probe HCO-9 was proven to be an effective tool for imaging CO and viscosity. Due to the advantages of NIR absorption and low toxicity, probe HCO-9 was successfully applied to image NAFLD in a mouse model.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Corantes Fluorescentes/química , Monóxido de Carbono , Viscosidade , Biomarcadores
12.
Toxics ; 11(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37888710

RESUMO

Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite (SbIII) and antimonate (SbV) uptake by ramie remain unclear. In this study, a hydroponic system was established to investigate how different substances affect the uptake of SbIII or SbV by ramie, including an energy inhibitor (malonic acid), an aquaglyceroporin inhibitor (silver nitrate), an SbV analog (phosphate-PV), and SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and glucose). The results indicated that ramie primarily transported Sb by increasing the Sb concentration in the bleeding sap, rather than increasing the weight of the bleeding sap. After 16 h of Sb exposure, the absolute amount of transported Sb from the roots to the aboveground parts was 1.90 times higher under SbIII than under SbV. The addition of malonic acid significantly inhibited the uptake of SbV but had limited effects on SbIII, indicating that SbV uptake was energy dependent. PV addition significantly reduced SbV uptake, while the addition of AsIII, glycerol, and Si obviously inhibited SbIII uptake. This suggested that the uptake of SbV might be via low-affinity P transporters and SbIII might use aquaglyceroporins. These findings deepen the understanding of Sb uptake pathways in ramie, contribute to a better comprehension of Sb toxicity mechanisms in ramie, and establish a foundation for identifying the most effective Sb uptake pathways, which could further improve the efficiency of phytoremediation of Sb-polluted soils.

13.
Chemosphere ; 341: 140072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678597

RESUMO

The study aimed to investigate the formation of halogenated disinfection byproducts (DBPs) during applying UV/chlorine (UV/Cl2) and unravel the interactive impacts of critical operational parameters and the mechanisms behind DBPs formation. Response surface methodology and quantitative structure-activity relationship models were developed to evaluate the contribution of electrophilic, nucleophilic, and free radical reactions to the formation of DBPs in UV/Cl2. The study found that Cl2 and its interactions dominated the total DBPs and non-Br-DBPs formation, while Br- and the Cl2-Br- interaction played a decisive role in the Br-DBPs formation. The study also observed significant interactions of Br, Cl2, and pH on chloroform, bromodichloromethane, dichloroacetonitrile, 1,1-dichloro-2-propanone, trichloroactic acid, and chlorodibromoacetic acid formations, while no evident interaction on chloral hydrate, dibromochloromethane, trichloroacetone, dibromoacetic acid, and bromodichloroacetic acid formations. The electrophilic substitution of HOBr mainly controlled the formation of trihalomethanes, and the contribution of nucleophilic, electrophilic, and free radical (•OH, Cl•, Cl2•- and ClO•) reactions depended on the molar ratio of Cl2 to Br, and pH-determined hydrolysis rate constants of DBPs and the types of free radicals. Overall, the response surface methodology and quantitative structure-activity relationship models provided a reference for revealing DBPs formation mechanisms in other disinfection processes.


Assuntos
Desinfecção , Relação Quantitativa Estrutura-Atividade , Hidrato de Cloral , Cloretos , Cloro , Halogênios
14.
Environ Sci Pollut Res Int ; 30(48): 105829-105839, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37718366

RESUMO

The presence of endocrine-disrupting chemicals (EDCs) in aquatic environments such as water, sediment, and sludge received more and more attention. However, the bioaccumulate properties of EDCs, particularly progestins and androgens, in various tissues of different wild freshwater fish species, as well as their effects on human health, have not been fully studied. The muscle, liver, and gills of three wild fish species obtained from the East Dongting Lake in southern China were examined for the presence of 19 EDCs (4 progestins, 5 androgens, 6 estrogens, and 4 phenols). Seventeen analytes were detected in all fish samples, and the concentrations of progestins, androgens, estrogens, and phenols ranged from ND-78.80 ng/g (wet weight, ww), ND-50.40 ng/g ww, ND-3573.82 ng/g ww, and ND-88.17 ng/g ww, respectively. The bioaccumulation of some EDCs in wild fish from East Dongting Lake was species-specific. Additionally, AND, EES, P4, and E2 were discovered in the liver at higher levels than in the muscle, suggesting that livers had a larger ability for enriching these EDCs than the muscle. Furthermore, the relationships between the fish sizes and the EDC concentrations indicated that total weight and length had a negligible impact on the bioaccumulation of EDCs in various fish species. Most importantly, the effects of EDCs on human health as a result of fish consumption were assessed. Although the estimated daily intakes (EDIs) of most EDCs were much lower compared with the corresponding acceptable daily intakes (ADIs) via consuming fish collected in this study, the EDI of EE2 in Silurus asotus was higher than the ADI of E2, indicating that Silurus asotus from East Dongting Lake should be eaten in moderation by local residents.


Assuntos
Peixes-Gato , Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Humanos , Estrogênios/análise , Progestinas/análise , Androgênios , Fenóis/análise , Distribuição Tecidual , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco , Lagos/química , Disruptores Endócrinos/análise
15.
J Environ Manage ; 347: 119124, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776798

RESUMO

Dimethylarsinic acid (DMA) is one of the common arsenic (As) species present in soil and is more toxic to plants than others. Identifying the crucial elements for plant growth under DMA stress is essential to enhance plant tolerance to DMA. Herein, we provided for the first time an ionome-based approach to address this issue. The phenotype, As species and concentrations of 11 essential elements in lettuce tissues were monitored under exposures of 0.1, 0.5, 1, 2, 5 mg L-1 DMA in hydroponic culture for 32 days. Lettuces remained normal (no significant difference in phenotype from the control) under 0.1-2 mg L-1 DMA stress, and were inhibited with fresh weights of leaf and root under 5 mg L-1 DMA stress. Integrating the difference in ionome profiles between the two growth states (normal and inhibited) and the responses of the individual element, Mg and S were clarified as the most possible candidates for the crucial elements for lettuce growth under DMA stress. Under 5 mg L-1 DMA stress, the accumulation of Mg and S declined, yet their BCF values were significantly increased, which was consistent with the change in BCF of DMA. Based on the physiological functions of Mg and S and the toxicity of DMA, it could be inferred that the enhanced transfer of Mg and S to leaves should be induced by the potential damage caused by the increased DMA accumulation in leaves, and would result in a shortage of both elements in roots as well as the growth inhibition.


Assuntos
Arsênio , Lactuca , Ácido Cacodílico , Arsênio/toxicidade , Plantas , Folhas de Planta
16.
J Hazard Mater ; 458: 131963, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406525

RESUMO

We investigated the adsorption mechanism of 66 coexisting pharmaceuticals and personal care products (PPCPs) on microplastics treated with potassium persulfate, potassium hydroxide, and Fenton reagent for 54, 110, and 500 days. The total adsorption capacity (qe) of 66 PPCPs on 15 original microplastics was 171.8 - 1043.7 µg/g, far below that of 177 long-term aged microplastics (7114.0 - 13,114.4 µg/g). Around 69.8% of qe was primarily influenced by the total energy, energy of the highest occupied molecular orbital, and energy gap of PPCPs, calculated using the B3LYP/6-31 G* level. Furthermore, 111 aged microplastics exhibited similar total qe values. Additionally, we developed predictive models based on attenuated total reflectance Fourier transform infrared spectroscopy to predict the individual and total qe on 192 microplastics. These models, including the maximal information coefficient and gradient boosting decision tree regression, exhibited high accuracy with Rtraining2 values of 0.9772 and 0.9661, respectively, and p-values below 0.001. Spectroscopic analysis and machine learning models highlighted surface functional group alterations and the importance of the 1528-1700 cm-1 spectral region and carbon skeleton in the adsorption process. In summary, our findings contribute to understanding the adsorption of PPCPs on microplastics, particularly in the context of long-term aging effects.


Assuntos
Cosméticos , Poluentes Químicos da Água , Microplásticos , Plásticos , Adsorção , Poluentes Químicos da Água/química , Aprendizado de Máquina , Preparações Farmacêuticas
17.
J Hazard Mater ; 458: 131604, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343407

RESUMO

To investigate the catalytic mechanism and mass transfer efficiency in the removal of amitriptyline using an electro-peroxide process, a CuFe2O4-modified carbon cloth cathode was prepared and utilized in a reaction unit. The results demonstrated a remarkable efficacy of the system, achieving 91.0% amitriptyline removal, 68.3% mineralization, 41.2% mineralization current efficiency, and 0.24 kWh/m3 energy consumption within just five minutes of treatment. The study revealed that the exposed Fe atoms of the ferrite nanoparticles, with a size of 22.7 nm and 89.7% crystallinity, functioned as mediators to bind the adsorbed O atoms. The 3dxy, 3dxz, and 3d2z orbitals of Fe atoms interacted with the 2pz orbital of O atoms of H2O2 and O3 to form σ and π bonds, facilitating the adsorption-activation of H2O2 and O3 into hydroxyl radicals. These hydroxyl radicals (∼ 1.15 × 1013 mol/L) were distributed at the cathode-solution interface and rapidly consumed along the direction of liquid flow. The flow-through cathode design improved the mass transfer of aqueous O3 and in-situ generated H2O2, leading to an increased yield of hydroxyl radicals, as well as the contact time and space between hydroxyl radicals and amitriptyline. Ultimately, this resulted in a higher degradation efficiency of the system.

18.
J Environ Manage ; 343: 118195, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229860

RESUMO

Soil antimony (Sb) pollution is a global concern that threatens food security and human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant exhibiting high tolerance and enrichment capacity for Sb. To reveal the molecular mechanisms and thus enhance the ramie uptake, transport, and detoxification of Sb with practical strategies, a hydroponic experiment was conducted to compare the physiological and transcriptomic responses of ramie towards antimonite (Sb(Ⅲ)) and antimonate (Sb(Ⅴ)). Phenotypic results showed that Sb(Ⅲ) had a stronger inhibitory effect on the growth of ramie. Root Sb content under Sb(Ⅲ) was 2.43 times higher than that in Sb(Ⅴ) treatment. Based on the ribonucleic acid sequencing (RNA-Seq) technique, 3915 and 999 significant differentially expressed genes (DEGs) were identified under Sb(Ⅲ) and Sb(Ⅴ), respectively. Transcriptomic analysis revealed that ramie showed different adaptation strategies to Sb(Ⅲ) and Sb(V). Key DEGs and their involved pathways such as catalytic activity, carbohydrate metabolisms, phenylpropanoid biosynthesis, and cell wall modification were identified to perform crucial roles in Sb tolerance and detoxification. Two heavy metal-associated domain-type genes, six heavy metal-associated isoprenylated plant proteins, and nine ABC transporters showed possible roles in the transport and detoxification of Sb. The significant upregulation of NRAMP5 and three NIPs suggested their roles in the transport of Sb(V). This study is the basis for future research to identify the exact genes and biological processes that can effectively enhance Sb accumulation or improve plant tolerance to Sb, thereby promoting the phytoremediation of Sb-polluted soils.


Assuntos
Boehmeria , Metais Pesados , Humanos , Antimônio/farmacologia , Transcriptoma , Boehmeria/genética , Boehmeria/metabolismo
19.
J Hazard Mater ; 454: 131533, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146331

RESUMO

The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.


Assuntos
Desinfetantes , Piscinas , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Desinfetantes/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Cloro , Halogenação
20.
Anal Chem ; 95(20): 8002-8010, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37159841

RESUMO

Intracellular redox homeostasis is highly important for the physiological processes of living organisms. Real-time monitoring of the dynamics of this intracellular redox process is pivotal but challenging because the biological redox reactions involved in the process are reversible and require at least one pair of oxidizing and reducing species. Thus, biosensors for investigating intracellular redox homeostasis need to be dual-functional, reversible, and, ideally, ratiometric in order for them to have real-time monitoring capacity and to provide accurate imaging information. In light of the importance of the redox pair between ClO- and GSH in living organisms, herein, we used the phenoselenazine (PSeZ) moiety as an electron donor and a reaction site to design a coumarin-based fluorescent probe, PSeZ-Cou-Golgi. After successive treatment with ClO- and GSH, the probe PSeZ-Cou-Golgi experienced an oxidation of selenium (Se) to selenoxide (Se═O) by ClO- and a subsequent reduction of Se═O to Se by GSH. The redox reactions alternatively changed the electron-donating strength of the donor in the probe PSeZ-Cou-Golgi, in turn affecting the intramolecular charge transfer process that resulted in the reversible, ratiometric change of fluorescence from red to green. After four cycles of reversible ClO-/GSH detection during in vitro experiments, the probe PSeZ-Cou-Golgi still had good performance. With the Golgi-targeting group, the probe PSeZ-Cou-Golgi was able to monitor the dynamic change of the ClO-/GSH-mediated redox state during Golgi oxidative stress, making it a versatile molecular tool. More importantly, the probe PSeZ-Cou-Golgi could facilitate the imaging of the dynamic redox state during acute lung injury progression.


Assuntos
Corantes Fluorescentes , Selênio , Oxirredução , Estresse Oxidativo , Diagnóstico por Imagem , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA