Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732668

RESUMO

Thermal-mechanical coupling during the molding process can cause compressive yield in the polymer foam core and then affect the molding quality of the sandwich structure. This work investigates the compressive mechanical properties and failure mechanism of polymethacrylimide (PMI) foam in the molding temperature range of 20-120 °C. First, the DMA result indicates that PMI foam has minimal mechanical loss in the 20~120 °C range and can be regarded as an elastoplastic material, and the TGA curve further proves that the PMI foam is thermally stable within 120 °C. Then, the compression results show that compared with 20 °C, the yield stress and elastic modulus of PMI foam decrease by 22.0% and 17.5% at 80 °C and 35.2% and 31.4% at 120 °C, respectively. Meanwhile, the failure mode changes from brittle fracture to plastic yield at about 80 °C. Moreover, a real representative volume element (rRVE) of PMI foam is established by using Micro-CT and Avizo 3D reconstruction methods, and the simulation results indicate that PMI foam mainly shows brittle fractures at 20 °C, while both brittle fractures and plastic yield occur at 80 °C, and most foam cells undergo plastic yield at 120 °C. Finally, the simulation based on a single-cell RVE reveals that the air pressure inside the foam has an obvious influence of about 6.7% on the yield stress of PMI foam at 80 °C (brittle-plastic transition zone).

2.
China CDC Wkly ; 6(15): 324-331, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736991

RESUMO

Introduction: In the first half of 2023, a global shift was observed towards the predominance of XBB variants. China faced a significant epidemic between late 2022 and early 2023 due to Omicron subvariants BA.5.2 and BF.7. This study aims to depict the evolving variant distribution among provincial-level administrative divisions (PLADs) in China and explore the factors driving the predominance of XBB replacement. Methods: Sequences from local and imported coronavirus disease 2019 (COVID-19) cases recorded between January 1 and June 30, 2023, were included. The study analyzed the changing distribution of viral variants and assessed how the prior dominance of specific variants, XBB subvariants, and imported cases influenced the prevalence of the XBB replacement variant. Results: A total of 56,486 sequences were obtained from local cases, and 8,669 sequences were from imported cases. Starting in April, there was a shift in the prevalence of XBB from imported to local cases, with varying dominance among PLADs. In PLADs previously high in BF.7, the rise of XBB was delayed. A positive correlation was found between XBB proportions in imported cases from January to March and local cases in April. The distribution pattern of XBB subvariants differed between local and imported cases within the same PLAD. No significant differences were noted in the replacement rates of XBB subvariants. Conclusions: The timing of XBB dominance differed among various PLADs in China in the first half of 2023, correlating closely with the prevalence of XBB variants among imported cases.

3.
PeerJ ; 12: e17370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737737

RESUMO

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Assuntos
Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Triticum , Triticum/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Temperatura Alta/efeitos adversos , Família Multigênica , Cromossomos de Plantas/genética , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica
4.
BMC Ecol Evol ; 24(1): 62, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735962

RESUMO

The epiphytic and endophytic bacteria play an important role in the healthy growth of plants. Both plant species and growth environmental influence the bacterial population diversity, yet it is inconclusive whether it is the former or the latter that has a greater impact. To explore the communities of the epiphytic and endophytic microbes in Camellia oleifera, this study assessed three representative C. oleifera cultivars from three areas in Hunan, China by Illumina high-throughput sequencing. The results showed that the diversity and species richness of endophytic microbial community in leaves were significantly higher than those of microbial community in the epiphytic. The diversity and species richness of epiphytic and endophytic microbes are complex when the same cultivar was grown in different areas. The C. oleifera cultivars grown in Youxian had the highest diversity of epiphytic microbial community, but the lowest abundance, while the cultivars grown in Changsha had the highest diversity and species richness of endophytic microbes in leaves. It was concluded that the dominant phylum mainly included Proteobacteria, Actinobacteriota and Firmicutes through the analysis of the epiphytic and endophytic microbial communities of C. oleifera. The species and relative abundances of epiphytic and endophytic microbial community were extremely different at the genus level. The analysis of NMDS map and PERMANOVA shows that the species richness and diversity of microbial communities in epiphytes are greatly influenced by region. However, the community structure of endophytic microorganisms in leaves is influenced by region and cultivated varieties, but the influence of cultivars is more significant. Molecular ecological network analysis showed that the symbiotic interaction of epiphytic microbial community was more complex.


Assuntos
Bactérias , Camellia , Endófitos , Microbiota , Folhas de Planta , Camellia/microbiologia , Endófitos/fisiologia , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , China , Folhas de Planta/microbiologia , Biodiversidade
5.
ACS Nano ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771969

RESUMO

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

6.
Plant Physiol Biochem ; 211: 108665, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38735155

RESUMO

Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.

7.
J Med Virol ; 96(5): e29664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727137

RESUMO

The causative agent of coronavirus disease 2019 (COVID-19), known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread accumulatively to 240 countries and continues to evolve. To gain a comprehensive understanding of the epidemiological characteristics of imported variants in China and their correlation with global circulating variants, genomic surveillance data from 11 139 imported COVID-19 cases submitted by Chinese provincial CDC laboratories between 2021 and 2022 were analyzed. Consensus sequences underwent rigorous quality checks, followed by amino acid mutations analysis using Nextclade. Sequences with satisfactory quality control status were classified according to the Pango nomenclature. The results showed that the dominant variants in imported cases reflected the global epidemic trend. An increase in the number of imported SARS-CoV-2 lineages monitored in China in the second half of 2022, and the circulating Omicron subvariants changed from the ancestral lineages of BA.5 and BA.2 into the lineages containing key amino acid mutations of spike protein. There was significant variation in the detection of Omicron subvariants among continents (χ2 = 321.968, p < 0.001) in the second half of 2022, with four lineages (BA.2.3.7, BA.2.2, BA.5.2.7, and XBB.1.2) identified through imported surveillance mainly prevalent respectively in Taiwan, China, Hong Kong SAR, China, Russian Federation, and Singapore. These findings revealed the alterations in circulating imported variants from 2021 to 2022 in China, reflecting the higher diversity of lineages in the second half of 2022, and revealed the predominant lineages of countries or regions that are in close contacts to China, providing new insights into the global prevalence of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , China/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Prevalência , Glicoproteína da Espícula de Coronavírus/genética , Filogenia , Mutação , Genoma Viral/genética , Variação Genética
8.
Plant Signal Behav ; 19(1): 2357367, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775124

RESUMO

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Fotossíntese , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , Fotossíntese/genética , Resposta ao Choque Térmico/genética , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética
9.
Pediatr Surg Int ; 40(1): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696138

RESUMO

OBJECTIVE: This study aimed to evaluate the role of receptor-interacting protein kinase-3 (RIPK3) in the diagnosis, estimation of disease severity, and prognosis of premature infants with necrotising enterocolitis (NEC). METHODS: RIPK3, lactic acid (LA), and C-reactive protein (CRP) levels were measured in the peripheral blood of 108 premature infants between 2019 and 2023, including 24 with stage II NEC, 18 with stage III NEC and 66 controls. Diagnostic values of the indicators for NEC were evaluated via receiver operating characteristic (ROC) curve analysis. RESULTS: Plasma RIPK3 and LA levels upon NEC suspicion in neonates with stage III NEC were 32.37 ± 16.20 ng/mL. The ROC curve for the combination of RIPK3, LA, CRP for NEC diagnosis were 0.925. The time to full enteral feeding (FEFt) after recovery from NEC was different between two expression groups of plasma RIPK3 (RIPK3 < 20.06 ng/mL and RIPK3 ≥ 20.06 ng/mL). CONCLUSION: Plasma RIPK3 can be used as a promising marker for the diagnosis and estimation of disease severity of premature infants with NEC and for the guidance on proper feeding strategies after recovery from NEC.


Assuntos
Biomarcadores , Enterocolite Necrosante , Recém-Nascido Prematuro , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Enterocolite Necrosante/sangue , Enterocolite Necrosante/diagnóstico , Recém-Nascido , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Biomarcadores/sangue , Masculino , Feminino , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Prognóstico , Curva ROC , Índice de Gravidade de Doença , Doenças do Prematuro/sangue , Doenças do Prematuro/diagnóstico , Estudos de Casos e Controles , Ácido Láctico/sangue
10.
Phytomedicine ; 129: 155565, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579646

RESUMO

BACKGROUND: Paeonia lactiflora Pall. (PL) is widely used in China as a homologous plant of medicine and food. PL flower is rich in bioactive substances with anti-inflammatory effects, while the pathogenesis of skin inflammation is complex and the specific mechanism is not clear, the current treatment of skin inflammation is mainly hormonal drugs, and hormonal drugs have obvious toxic side effects. The research on the treatment of skin inflammation by PL flowers is relatively small, so this study provides a basis for the development and utilisation of PL resources. OBJECTIVE: Our study was to investigate the interventional effects of PL flower extracts on skin inflammation and thus to understand its functional role in the treatment of skin inflammation and its molecular mechanisms. METHODS: The major active substances in PL flower extracts were investigated by the HPLC-DAD method, and the potential targets of action were predicted by network pharmacology, which was combined with in vitro experimental validation to explore the mechanism of PL flower extracts on the regulation of skin inflammation. The HPLC-DAD analysis identified seven major active components in PL flower extracts, and in response to the results, combined with the potential mechanism of network pharmacological prediction with skin inflammation, the PL flower extract is closely related to MAPK and NF-κB signaling pathways. In addition, we also investigated the interventional effects of PL flower extract on skin inflammation by western blot detection of MAPK signaling pathway and NF-κB signaling pathway proteins in cells. RESULT: Seven active components were identified and quantified from the extract of PL flowers, including Gallic acid, 1,2,3,4,6-O-Pentagalloylglucose, Oxypaeoniflorin, Paeoniflorin, Albiflorin, Benzoyloxypeoniflorin, and Rutin. It was predicted targets for the treatment of skin inflammation, with PPI showing associations with targets such as TNF, MAPK1, and IL-2. KEGG enrichment analysis revealed that the main signaling pathways involved included MAPK and T cell receptor signaling pathways. Cell experiments showed that the peony flower extract could inhibit the release of NO and inflammatory factors, as well as reduce ROS levels and inhibit cell apoptosis. Furthermore, the extract was found to inhibit the activation of the MAPK and NF-κB signaling pathways in cells. CONCLUSIONS: In this study, we found that PL flower extract can inhibit the production of cell inflammatory substances, suppress the release of inflammatory factors, and deactivate inflammatory signaling pathways, further inhibiting the production of cell inflammation. This indicates that PL flower extract has a therapeutic effect on skin inflammation.

11.
J Clin Ultrasound ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561934

RESUMO

OBJECTIVE: To analyze the value of prenatal ultrasound and molecular testing in diagnosing fetal skeletal dysplasia (SD). METHODS: Clinical data, prenatal ultrasound data, and molecular results of pregnant women with fetal SD were collected in the ultrasound department of our clinic from May 2019 to December 2021. RESULTS: A total of 40 pregnant women with fetal SD were included, with 82.5% exhibiting short limb deformity, followed by 25.0% with central nervous system malformations, 17.50% with facial malformations, 15% with cardiac malformations, and 12.5% with urinary system malformations. The genetic testing positive rate was 70.0% (28/40), with 92.8% (26/28) being single-gene disorders due to mutations in FGFR3, COL1A1, COL1A2, EVC2, FLNB, LBR, and TRPV4 genes. The most common SD subtypes were osteogenesis imperfecta (OI), thanatophoric dysplasia (TD), and achondroplasia (ACH). The gestational age (GA) at initial diagnosis for TD, OI, and ACH was 16.6, 20.9, and 28.3 weeks, respectively (p < 0.05), with no significant difference in femoral shortening between the three groups (p > 0.05). Of the OI cases, 5 out of 12 had a family history. CONCLUSION: Short limb deformity is the most prevalent phenotype of SD. When fetal SD is suspected, detailed ultrasound screening should be conducted, combined with GA at initial diagnosis, family history, and molecular evidence, to facilitate more accurate diagnosis and enhance prenatal counseling and perinatal management.

12.
Neural Regen Res ; 19(12): 2760-2772, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595293

RESUMO

JOURNAL/nrgr/04.03/01300535-202412000-00031/figure1/v/2024-04-08T165401Z/r/image-tiff Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy. Currently, there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury. Here, we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide, which can protect against hypoxic injury in adulthood, in a mouse model of neonatal hypoxic-ischemic brain injury. In this study, nicotinamide adenine dinucleotide (5 mg/kg) was intraperitoneally administered 30 minutes before surgery and every 24 hours thereafter. The results showed that nicotinamide adenine dinucleotide treatment improved body weight, brain structure, adenosine triphosphate levels, oxidative damage, neurobehavioral test outcomes, and seizure threshold in experimental mice. Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice. Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine (or cysteine) peptidase inhibitor, clade A, member 3N, fibronectin 1, 5'-nucleotidase, cytosolic IA, microtubule associated protein 2, and complexin 2. Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways (e.g., nuclear factor-kappa B, mitogen-activated protein kinase, and phosphatidylinositol 3 kinase/protein kinase B). These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.

13.
Nanotechnology ; 35(28)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38574484

RESUMO

Nitrogen dioxide (NO2) is a major pollutant that poses significant risks to sustainable human life. As a result, a growing focus has been placed on the development of highly selective and sensitive gas sensors for NO2. Traditional cutting-edge non-organic NO2gas detectors often necessitate stringent production conditions and potentially harmful materials, which are not environmentally friendly, and these shortcomings have limited their widespread practical use. To overcome these challenges, we synthesized self-assembled peptide nanotubes (SPNTs) through a molecular self-assembly process. The SPNTs were then combined with SnO2in varying proportions to construct NO2gas sensors. The design of this sensor ensured efficient electron transfer and leverage the extensive surface area of the SPNTs for enhanced gas adsorption and the effective dispersion of SnO2nanoparticles. Notably, the performance of the sensor, including its sensitivity, response time, and recovery rate, along with a lower detection threshold, could be finely tuned by varying the SPNTs content. This approach illustrated the potential of bioinspired methodologies, using peptide self-assemblies, to develop integrated sensors for pollutant detection, providing a significant development in environmentally conscious sensor technology.


Assuntos
Nanocompostos , Nanotubos de Peptídeos , Dióxido de Nitrogênio , Compostos de Estanho , Compostos de Estanho/química , Dióxido de Nitrogênio/análise , Nanotubos de Peptídeos/química , Nanocompostos/química , Temperatura
14.
Nanoscale ; 16(19): 9536-9544, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38659413

RESUMO

Designing advanced electrode materials that can be reliably cycled at high temperatures and used for assembling advanced energy storage devices remain a major challenge. As a representative of novel wide bandgap semiconductors, silicon carbide (SiC) single crystals have broad prospects in high-temperature energy storage due to their excellent characteristics such as low thermal expansion coefficient, high temperature radiation resistance and stable chemical properties. In this work, an N-type SiC single-crystal material with a high-density porous structure was successfully designed and prepared by using an improved electrochemical anodic oxidation strategy. Besides, the N-type SiC single crystals were used in electrochemical energy storage as an integrated electrode material, exhibiting superior electrochemical performance. In addition, the high-temperature supercapacitor device assembled with ionic liquids has a wide operating temperature range and maintains a capacity of 88.24% after 5000 cycles at 150 °C. The reasons for its high energy storage performance are discussed through electrochemical tests and first-principles calculation methods. This study proves that the application of SiC single crystals in supercapacitor devices has great potential in the field of high-temperature energy storage, providing a reference for the further development of novel semiconductors in the field of energy storage and optoelectronic devices.

15.
Exp Neurol ; 376: 114770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580155

RESUMO

BACKGROUND AND OBJECTIVES: Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS: To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aß deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS: Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aß via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION: The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aß via inhibition of TRPV4-induced astrocytic calcium hyperactivity.


Assuntos
Astrócitos , Disfunção Cognitiva , Colite , Sistema Glinfático , Condicionamento Físico Animal , Canais de Cátion TRPV , Animais , Feminino , Camundongos , Envelhecimento , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Cálcio/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Sistema Glinfático/metabolismo , Camundongos Endogâmicos C57BL , Morfolinas , Condicionamento Físico Animal/fisiologia , Pirróis , Canais de Cátion TRPV/metabolismo
16.
Thromb Haemost ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657649

RESUMO

BACKGROUND: The objective of this study is to utilize Mendelian randomization to scrutinize the mutual causality between migraine and venous thromboembolism (VTE) thereby addressing the heterogeneity and inconsistency that were observed in prior observational studies concerning the potential interrelation of the two conditions. METHODS: Employing a bidirectional Mendelian randomization approach, the study explored the link between migraine and VTE, incorporating participants of European descent from a large-scale meta-analysis. An inverse-variance weighted (IVW) regression model, with random-effects, leveraging single nucleotide polymorphisms (SNPs) as instrumental variables was utilized to endorse the mutual causality between migraine and VTE. SNP heterogeneity was evaluated using Cochran's Q-test and to account for multiple testing, correction was implemented using the intercept of the MR-Egger method, and a leave-one-out analysis. RESULTS: The IVW model unveiled a statistically considerable causal link between migraine and the development of VTE (odds ratio [OR] = 96.155, 95% confidence interval [CI]: 4.342-2129.458, p = 0.004), implying that migraine poses a strong risk factor for VTE development. Conversely, both IVW and simple model outcomes indicated that VTE poses as a weaker risk factor for migraine (IVW OR = 1.002, 95% CI: 1.000-1.004, p = 0.016). The MR-Egger regression analysis denoted absence of evidence for genetic pleiotropy among the SNPs while the durability of our Mendelian randomization results was vouched by the leave-one-out sensitivity analysis. CONCLUSION: The findings of this Mendelian randomization assessment provide substantiation for a reciprocal causative association between migraine and VTE within the European population.

17.
Medicine (Baltimore) ; 103(16): e37792, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640281

RESUMO

Currently, few studies have demonstrated the relationship between total serum IgE (T-IgE) and acute exacerbation chronic obstructive pulmonary disease (AECOPD). In this study, T-IgE in AECOPD patients were investigated and jointly analyzed with the clinical characteristics. AECOPD patients hospitalized from July 2018 to July 2019 were included in this study. In this patient cohort, clinical information was investigated. Routine blood tests, C-reactive protein and T-IgE levels of patients were determined along with blood gas analysis. The length of hospital stays, mechanical ventilation during hospitalization, ICU admission, glucocorticoid related clinical information were recorded. A total of 285 AECOPD patients were included in this study, which consisted of a high proportion of males. Of all patients, 49.82% patients exhibited higher T-IgE levels. Based on the reference T-IgE value 60 kU/L, patients were divided into high T-IgE group with T-IgE > 60 kU/L, and low T-IgE group with T-IgE ≤ 60 kU/L. There was no significant difference in the dosage of glucocorticoid between the two groups. Patients in the high T-IgE group had shorter hospital stays and lower probability of mechanical ventilation compared to the low T-IgE group. After adjustment for confounding factors, T-IgE was negatively correlated with the length of hospital stays. AECOPD patients with elevated T-IgE had shorter hospital stays and lower risks of mechanical ventilation and ICU admission. Our results showed that T-IgE might play an important role on evaluating the condition and guiding for treatment decisions in AECOPD patients.


Assuntos
Glucocorticoides , Doença Pulmonar Obstrutiva Crônica , Masculino , Humanos , Estudos Retrospectivos , Glucocorticoides/uso terapêutico , Hospitalização , Doença Pulmonar Obstrutiva Crônica/terapia , Imunoglobulina E , Progressão da Doença
18.
Patterns (N Y) ; 5(4): 100950, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645767

RESUMO

Standard energy-consumption testing, providing the only publicly available quantifiable measure of battery electric vehicle (BEV) energy consumption, is crucial for promoting transparency and accountability in the electrified automotive industry; however, significant discrepancies between standard testing and real-world driving have hindered energy and environmental assessments of BEVs and their broader adoption. In this study, we propose a data-driven evaluation method for standard testing to characterize BEV energy consumption. By decoupling the impact of the driving profile, our evaluation approach is generalizable to various driving conditions. In experiments with our approach for estimating energy consumption, we achieve a 3.84% estimation error for 13 different multiregional standardized test cycles and a 7.12% estimation error for 106 diverse real-world trips. Our results highlight the great potential of the proposed approach for promoting public awareness of BEV energy consumption through standard testing while also providing a reliable fundamental model of BEVs.

19.
Nat Struct Mol Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658622

RESUMO

The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.

20.
Small ; : e2400042, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600889

RESUMO

Modulating the coordination environment of the metal active center is an effective method to boost the catalytic performances of metal-organic frameworks (MOFs) for oxygen evolution reaction (OER). However, little attention has been paid to the halogen effects on the ligands engineering. Herein, a series of MOFs X─FeNi-MOFs (X = Br, Cl, and F) is constructed with different coordination microenvironments to optimize OER activity. Theoretical calculations reveal that with the increase in electronegativity of halogen ions in terephthalic acid molecular (TPA), the Bader charge of Ni atoms gets larger and the Ni-3d band center and O-2p bands move closer to the Fermi level. This indicates that an increase in ligand negativity of halogen ions in TPA can promote the adsorption ability of catalytic sites to oxygen-containing intermediates and reduce the activation barrier for OER. Experimental also demonstrates that F─FeNi-MOFs exhibit the highest catalytic activity with an ultralow overpotential of 218 mV at 10 mA cm-2, outperforming most otate-of-the-art Fe/Co/Ni-based MOFs catalysts, and the enhanced mass activity by seven times compared with that for the sample before ligands engineering. This work opens a new avenue for the realization of the modulation of NiFe─O bonding by halogen ion in TPA and improves the OER performance of MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA