Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Phys Chem Chem Phys ; 26(25): 17809-17816, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884121

RESUMO

Thermally activated delayed fluorescence (TADF) has been widely applied to electroluminescent materials to take the best advantage of triplet excitons. For some materials, the TADF originates from high-level reverse intersystem crossing (hRISC), and has attracted much attention due to its high efficiency for utilizing the triplet excitons. However, reports concerning the mechanistic studies on the hRISC-TADF process and structure-property correlation are sparse. In this study, we prepared three compounds containing triphenylamine and benzophenone with different substitution positions, o-TPA-BP, m-TPA-BP, and p-TPA-BP, in which only p-TPA-BP displays strong luminescence and hRISC-TADF features. To investigate the mechanism of the substituent-position-dependent hRISC-TADF, ultrafast time-resolved spectroscopy was utilized to observe the deactivation pathways with the assistance of theoretical calculations. The results show that o-TPA-BP will not generate triplet species, and the triplet species for m-TPA-BP will rapidly deactivate. Only p-TPA-BP can transition back to the singlet state from the T2 state effectively and exhibit a large gap between T1 and T2 to favor the hRISC route. These results illustrate how the substitution position affects the ISC and further influences the luminescence properties, which can provide new insights for developing new high-efficiency luminescent materials.

2.
Nat Commun ; 15(1): 4674, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824140

RESUMO

Polymer-based pure organic room-temperature phosphorescent materials have tremendous advantages in applications owing to their low cost, vast resources, and easy processability. However, designing polymer-based room-temperature phosphorescent materials with large Stokes shifts as key requirements in biocompatibility and environmental-friendly performance is still challenging. By generating charge transfer states as the gangplank from singlet excited states to triplet states in doped organic molecules, we find a host molecule (pyrrolidone) that affords charge transfer with doped guest molecules, and excellent polymer-based organic room-temperature phosphorescent materials can be easily fabricated when polymerizing the host molecule. By adding polyaromatic hydrocarbon molecules as electron-donor in polyvinylpyrrolidone, efficient intersystem crossing and tunable phosphorescent from green to near-infrared can be achieved, with maximum phosphorescence wavelength and lifetime up to 757 nm and 3850 ms, respectively. These doped polyvinylpyrrolidone materials have good photoactivation properties, recyclability, advanced data encryption, and anti-counterfeiting. This reported design strategy paves the way for the design of polyvinylpyrrolidone-based room-temperature phosphorescent materials.

3.
Chem Sci ; 15(22): 8422-8429, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846403

RESUMO

Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 µmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.

4.
Radiology ; 311(1): e231461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652028

RESUMO

Background Noninvasive tests can be used to screen patients with chronic liver disease for advanced liver fibrosis; however, the use of single tests may not be adequate. Purpose To construct sequential clinical algorithms that include a US deep learning (DL) model and compare their ability to predict advanced liver fibrosis with that of other noninvasive tests. Materials and Methods This retrospective study included adult patients with a history of chronic liver disease or unexplained abnormal liver function test results who underwent B-mode US of the liver between January 2014 and September 2022 at three health care facilities. A US-based DL network (FIB-Net) was trained on US images to predict whether the shear-wave elastography (SWE) value was 8.7 kPa or higher, indicative of advanced fibrosis. In the internal and external test sets, a two-step algorithm (Two-step#1) using the Fibrosis-4 Index (FIB-4) followed by FIB-Net and a three-step algorithm (Three-step#1) using FIB-4 followed by FIB-Net and SWE were used to simulate screening scenarios where liver stiffness measurements were not or were available, respectively. Measures of diagnostic accuracy were calculated using liver biopsy as the reference standard and compared between FIB-4, SWE, FIB-Net, and European Association for the Study of the Liver guidelines (ie, FIB-4 followed by SWE), along with sequential algorithms. Results The training, validation, and test data sets included 3067 (median age, 42 years [IQR, 33-53 years]; 2083 male), 1599 (median age, 41 years [IQR, 33-51 years]; 1124 male), and 1228 (median age, 44 years [IQR, 33-55 years]; 741 male) patients, respectively. FIB-Net obtained a noninferior specificity with a margin of 5% (P < .001) compared with SWE (80% vs 82%). The Two-step#1 algorithm showed higher specificity and positive predictive value (PPV) than FIB-4 (specificity, 79% vs 57%; PPV, 44% vs 32%) while reducing unnecessary referrals by 42%. The Three-step#1 algorithm had higher specificity and PPV compared with European Association for the Study of the Liver guidelines (specificity, 94% vs 88%; PPV, 73% vs 64%) while reducing unnecessary referrals by 35%. Conclusion A sequential algorithm combining FIB-4 and a US DL model showed higher diagnostic accuracy and improved referral management for all-cause advanced liver fibrosis compared with FIB-4 or the DL model alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ghosh in this issue.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade , Cirrose Hepática , Humanos , Masculino , Cirrose Hepática/diagnóstico por imagem , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Técnicas de Imagem por Elasticidade/métodos , Adulto , Aprendizado Profundo , Fígado/diagnóstico por imagem , Fígado/patologia , Idoso , Ultrassonografia/métodos
5.
Angew Chem Int Ed Engl ; 63(29): e202402774, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38584586

RESUMO

Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τT=62 µs), satisfactory ISC efficiency (ΦΔ=54.3 %) and powerful reduction capacity [Singlet: E1/2 (PC+1/*PC)=-1.93 eV, Triplet: E1/2 (PC+1/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm-2) and low catalyst (NI-1) loading (<50 µM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 µm.

6.
Radiology ; 310(3): e232255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470237

RESUMO

Background Large language models (LLMs) hold substantial promise for medical imaging interpretation. However, there is a lack of studies on their feasibility in handling reasoning questions associated with medical diagnosis. Purpose To investigate the viability of leveraging three publicly available LLMs to enhance consistency and diagnostic accuracy in medical imaging based on standardized reporting, with pathology as the reference standard. Materials and Methods US images of thyroid nodules with pathologic results were retrospectively collected from a tertiary referral hospital between July 2022 and December 2022 and used to evaluate malignancy diagnoses generated by three LLMs-OpenAI's ChatGPT 3.5, ChatGPT 4.0, and Google's Bard. Inter- and intra-LLM agreement of diagnosis were evaluated. Then, diagnostic performance, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), was evaluated and compared for the LLMs and three interactive approaches: human reader combined with LLMs, image-to-text model combined with LLMs, and an end-to-end convolutional neural network model. Results A total of 1161 US images of thyroid nodules (498 benign, 663 malignant) from 725 patients (mean age, 42.2 years ± 14.1 [SD]; 516 women) were evaluated. ChatGPT 4.0 and Bard displayed substantial to almost perfect intra-LLM agreement (κ range, 0.65-0.86 [95% CI: 0.64, 0.86]), while ChatGPT 3.5 showed fair to substantial agreement (κ range, 0.36-0.68 [95% CI: 0.36, 0.68]). ChatGPT 4.0 had an accuracy of 78%-86% (95% CI: 76%, 88%) and sensitivity of 86%-95% (95% CI: 83%, 96%), compared with 74%-86% (95% CI: 71%, 88%) and 74%-91% (95% CI: 71%, 93%), respectively, for Bard. Moreover, with ChatGPT 4.0, the image-to-text-LLM strategy exhibited an AUC (0.83 [95% CI: 0.80, 0.85]) and accuracy (84% [95% CI: 82%, 86%]) comparable to those of the human-LLM interaction strategy with two senior readers and one junior reader and exceeding those of the human-LLM interaction strategy with one junior reader. Conclusion LLMs, particularly integrated with image-to-text approaches, show potential in enhancing diagnostic medical imaging. ChatGPT 4.0 was optimal for consistency and diagnostic accuracy when compared with Bard and ChatGPT 3.5. © RSNA, 2024 Supplemental material is available for this article.


Assuntos
Nódulo da Glândula Tireoide , Humanos , Feminino , Adulto , Nódulo da Glândula Tireoide/diagnóstico por imagem , Estudos Retrospectivos , Idioma , Redes Neurais de Computação , Curva ROC
7.
Nat Commun ; 15(1): 2561, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519517

RESUMO

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.


Assuntos
Anti-Infecciosos , Cárie Dentária , Ácidos Nucleicos , Humanos , Cristalização , Anti-Infecciosos/farmacologia
8.
Langmuir ; 40(8): 4410-4423, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38348971

RESUMO

In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.

9.
RSC Adv ; 14(7): 4503-4508, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312733

RESUMO

Organic cocrystal engineering provides a promising route to promote the near-infrared (NIR) light harvesting and photothermal conversion (PTC) abilities of small organic molecules through the rich noncovalent bond interactions of D/A units. Besides, the single-bond rotatable groups known as "rotors" are considered to be conducive to the nonradiative transitions of the excited states of organic molecules. Herein, we propose a single-/double-bond dual-rotor strategy to construct D-A cocrystals for NIR PTC application. The results reveal that the cocrystal exhibits an ultra-broadband absorption from 300 nm to 2000 nm profiting from the strong π-π stacking and charge transfer interactions, and the weakened p-π interaction. More importantly, the PTC efficiency of cocrystals at 1064 nm in the NIR-II region can be largely enhanced by modulating the number of rotor groups and the F-substituents of D/A units. As is revealed by fs-TA spectroscopy, the superior NIR PTC performance can be attributed to the nonradiative decays of excited states induced by the free rotation of the single-bond rotor (-CH3) from the donors and the inactive double-bond rotor ([double bond, length as m-dash]C(C[triple bond, length as m-dash]N)2) being in the active form of [-C(C[triple bond, length as m-dash]N)2] in the excited states from the acceptors. This prototype displays a promising route to extend the functionalization of small organic molecules based on organic cocrystal engineering.

10.
J Phys Chem Lett ; 15(4): 959-968, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252167

RESUMO

To study the intersystem crossing (ISC) and the spatial confinement of the triplet excited states of organic chromophores, we prepared a series of Bodipy dimers. We found that the connection position of the two units has a significant effect on the absorption and fluorescence. Singlet oxygen quantum yields of 3.8-12.4% were observed for the dimers, which are independent of solvent polarity. Nanosecond transient absorption spectra indicate the population of long-lived triplet excited states with lifetimes (τT) of 45-454 µs. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that the T1 triplet states are essentially delocalized, which is different from the case for the previously reported Bodipy dimers. The TREPR spectra of the triplet states imply that the delocalization over the whole dimer essentially depends on the electron density of the carbon atoms at the connection sites. This property may become a universal rule for controlling the T1 state confinement in multichromophore organic molecules.

11.
Angew Chem Int Ed Engl ; 63(10): e202318628, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38225206

RESUMO

An anion-counterion strategy is proposed to construct organic mono-radical charge-transfer cocrystals for near-infrared photothermal conversion and solar-driven water evaporation. Ionic compounds with halogen anions as the counterions serve as electron donors, providing the necessary electrons for efficient charge transfer with unchanged skeleton atoms and structures as well as the broad red-shifted absorption (200-2000 nm) and unprecedented photothermal conversion efficiency (~90.5 %@808 nm) for the cocrystals. Based on these cocrystals, an excellent solar-driven interfacial water evaporation rate up to 6.1±1.1 kg ⋅ m-2 ⋅ h-1 under 1 sun is recorded due to the comprehensive evaporation effect from the cocrystal loading in polyurethane foams and chimney addition, such performance is superior to the reported results on charge-transfer cocrystals or other materials for solar-driven interfacial evaporation. This prototype exhibits the great potential of cocrystals prepared by the one-step mechanochemistry method in practical large-scale seawater desalination applications.

12.
J Phys Chem Lett ; 15(1): 68-75, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38131660

RESUMO

The specific stacking mode of D/A blocks is often considered to largely determine the physicochemical properties of cocrystals. However, this rule may fail when encountering a large degree of (integer or near-integer) charge transfer situations. Herein, we explore the extensive correlations between the possible smallest structural units, stacking modes, and near-infrared photothermal conversion (NIR-PTC) properties of F4TCNQ-based cocrystals with typical features of integer-charge-transfer. Surprisingly, these cocrystals with distinct stacking modes display analogous D-A interactions, broad red-shift absorption, ultrafast (1-3 ps) relaxation dynamics of excited states, and excellent NIR-PTC properties. This supports that the resulting "D+A-" ion pairs from integer-charge-transfer may serve as the primary structural units beneath the secondary stacking modes to dominate the property of cocrystals. The stacking modes play an important but only secondary role. This work provides new insights into the structure-dynamics-property correlations and modular design of organic cocrystals for PTC and other applications.

13.
J Phys Chem Lett ; 14(49): 11008-11014, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047753

RESUMO

Herein, we successfully prepare conductive polyaniline (PANI)-encapsulated CsPbBr3 perovskite nanocrystals (PNCs) that demonstrate much improved photocatalytic performance and stability toward the CO2 reduction reaction (CRR) coupled with oxidation of benzyl alcohol (BA) to benzaldehyde. Due to the acid-base interaction between CO2 and PANI, CO2 molecules are selectively adsorbed on PANI in the form of carbamate. As a result, the rate of production of CO (rCO) reaches 26.1 µmol g-1 h-1 with a selectivity of 98.1%, which is in good agreement with the rate of oxidation (∼27.0 µmol g-1 h-1) of BA. Such a high reduction/oxidation rate is enabled by the fast electron transfer (∼2.2 ps) from PNCs to PANI, as revealed by femtosecond transient absorption spectroscopy. Moreover, because of the benefit of the encapsulation of PANI, no significant decrease in rCO is observed in a 10 h CRR test. This work offers insight into how to simultaneously achieve improved photocatalytic performance and stability of CsPbX3 PNCs.

14.
J Phys Chem Lett ; 14(51): 11580-11586, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100086

RESUMO

Blebbistatin (Bleb) derivatives are a visible light photocage platform. During the photocleavage process, intramolecular charge transfer (ICT) and cationic intermediates play a decisive role. However, slow photolysis rate and low photolysis quantum yield are the main problems for Bleb's derivatives. Herein, by introducing a substituted OCH3 group at the para-position of the D ring, Bleb and Bleb derivatives with various leaving groups were synthesized and studied, and the photolysis performance was unveiled by steady-state spectra, photolysis rate experiments, photolysis quantum yield, and density functional theory calculations. Substituted OCH3 derivatives of Bleb may enhance the photolysis rate and increase the photolysis quantum yield because the electron-donating group can promote the ICT process and stabilize the cationic intermediate during the photolytic reaction. More generally, the insights gained from this structure-reactivity relationship may provide theoretical guidance and aid in the development of new highly efficient photoreactions.

15.
J Phys Chem A ; 127(45): 9473-9482, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37824456

RESUMO

The detailed mechanism for NHC-Cu(I)-catalyzed intermolecular nucleophilic substitution of the C-H bonds at aniline (2-methyl-N-methoxyaniline) was studied via DFT methods to reveal the essence of the selectivity. Calculations revealed that the meta C-H functionalization proceeds via two nucleophilic attacks on the aromatic ring rather than a one-step meta C-H substitution to give the experimentally observed major product. The reaction is initiated by activation of the substrate via oxidative addition with an NHC-Cu(I) catalyst, through which an umpolung occurs at the ring. From the activated intermediate, methoxyl group transfer to benzyl forms a resting state, while a nucleophile can attack the ortho position of benzyl to form a more stable intermediate. The nucleophile group can then transfer to the meta position by a 1,2-Wagner-Meerwein rearrangement to form the final product through a proton shuttle. In contrast, other transfer processes affording ortho- or para-substituted products encounter higher activation barriers. This work investigates the relationship of product selectivity with the umpolung of the aromatic ring, as well as the priority of a nucleophilic attack at the ortho position of the aromatic, 1,2-Wagner-Meerwein rearrangement from the ortho-substituted intermediate, and proton shuttle from the meta-substituted intermediate.

16.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37818997

RESUMO

Photofunctional materials based on donor-acceptor molecules have drawn intense attention due to their unique optical properties. Importantly, Systematic investigation of substitution effects on excited-state charge transfer dynamics of donor-acceptor molecules is a powerful approach for identifying application-relevant design principles. Here, by coupling phenothiazine (PTZ) at the ortho-, meta-, and para-positions of the benzene ring of benzophenone (BP), three regioisomeric BP-PTZ dyads were designed to understand the relationship between substituted positions and excited-state evolution channels. Ultrafast transient absorption is used to detect and trace the transient species and related evolution channels of BP-PTZ dyads at excited state. In a non-polar solvent, BP-o-PTZ undergoes the through-space charge transfer process to produce a singlet charge-transfer (1CT) state, which subsequently proceeds the intersystem crossing process and transforms into a triplet charge-transfer (3CT) state; BP-m-PTZ experiences intramolecular charge transfer (ICT) process to generate the 1CT state, which subsequently transforms into the 3CT state by the intersystem crossing (ISC) and finally converts into the local-excited triplet (3LE) state; as for BP-p-PTZ, only 3LE states can be detected after the ISC process from the 1CT state. On the other hand, the twisted ICT states are generated via twisted motion between the donor and acceptor for all BP-PTZ dyads or planarization of the PTZ unit in high polar solvents. The excited-state theoretical calculations unveil that the features of ICT and intramolecular interaction between the three dyads play a decisive role in determining the through-bond charge transfer and through-space charge transfer processes. Also, these results demonstrate that the excited-state evolution channels of PTZ derivatives could be modified by tuning the substituted positions of the donor-acceptor dyads. This study provides a deep perspective for the substitute-position effect on donor-acceptor-type PTZ derivatives.

17.
Angew Chem Int Ed Engl ; 62(43): e202312698, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37682089

RESUMO

The first coordination-saturated buckyball with a C60 molecule totally encased in an icosidodecahedral Cu30 in a (µ30 -(η2 )30 )-fashion, namely C60 @Cu30 @Cl36 N12 , has been successfully realized by a C60 -templated assembly. The 48 outmost coordinating atoms (36Cl+12N) comprise a new simple polyhedron that is described by a ccf topology. Charge transfer from (CuI , Cl) to C60 explains the expansion of the light absorption up to 700 nm, and accounts for an ultrafast photophysical process that underpins its high photothermal conversion efficiency. This work makes a giant step forward in exohedral metallofullerene (ExMF) chemistry.

18.
J Am Chem Soc ; 145(37): 20381-20388, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668654

RESUMO

Realizing the dual emission of fluorescence-phosphorescence in a single system is an extremely important topic in the fields of biological imaging, sensing, and information encryption. However, the phosphorescence process is usually in an inherently "dark state" at room temperature due to the involvement of spin-forbidden transition and the rapid non-radiative decay rate of the triplet state. In this work, we achieved luminescent harvesting of the dark phosphorescence processes by coupling singlet-triplet molecular emitters with a rationally designed plasmonic cavity. The achieved Purcell enhancement effect of over 1000-fold allows for overcoming the triplet forbidden transitions, enabling radiation enhancement with selectable emission wavelengths. Spectral results and theoretical simulations indicate that the fluorescence-phosphorescence peak position can be intelligently tailored in a broad range of wavelengths, from visible to near-infrared. Our study sheds new light on plasmonic tailoring of molecular emission behavior, which is crucial for advancing research on plasmon-tailored fluorescence-phosphorescence spectroscopy in optoelectronics and biomedicine.

19.
Angew Chem Int Ed Engl ; 62(44): e202312600, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37654187

RESUMO

The design of efficient heavy atom-free triplet photosensitizers (PSs) based on through bond charge transfer (TBCT) features is a formidable challenge due to the criteria of orthogonal donor-acceptor geometry. Herein, we propose using parallel (face-to-face) conformation carbazole-bodipy donor-acceptor dyads (BCZ-1 and BCZ-2) featuring through space intramolecular charge transfer (TSCT) process as efficient triplet PS. Efficient intersystem crossing (ΦΔ =61 %) and long-lived triplet excited state (τT =186 µs) were observed in the TSCT dyad BCZ-1 compared to BCZ-3 (ΦΔ =0.4 %), the dyad involving TBCT, demonstrating the superiority of the TSCT approach over conventional donor-acceptor system. Moreover, the transient absorption study revealed that TSCT dyads have a faster charge separation and slower intersystem crossing process induced by charge recombination compared to TBCT dyad. A long-lived charge-separated state (CSS) was observed in the BCZ-1 (τCSS =24 ns). For the first time, the TSCT dyad was explored for the triplet-triplet annihilation upconversion, and a high upconversion quantum yield of 11 % was observed. Our results demonstrate a new avenue for designing efficient PSs and open up exciting opportunities for future research in this field.

20.
J Phys Chem Lett ; 14(33): 7507-7512, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37581610

RESUMO

Blebbistatin was demonstrated as a promising two-photon near-infrared activated photoremovable protecting group of hydroxyl radicals with various potential applications. However, the photocleavage mechanism of the blebbistatin derivatives remains ambiguous. Herein, blebbistatin derivatives with various electronic characteristic leaving groups were synthesized and studied, and the photocleavage mechanism(s) and the tunable effect of the leaving groups were unveiled by combining photoproduct analysis, reactive oxygen radical species detection, femtosecond transient absorption spectroscopy, and density functional theory calculation. More substantial electron-withdrawing leaving groups facilitate heterolysis of the C-O bond, which results in a cationic intermediate and a corresponding remnant. Weaker electron-withdrawing groups lead to a higher proportion of homolysis of the C-O bond, accompanied by the generation of the reactive oxygen radical species. With this structure-property relationship, the protected groups of the molecules of interest can be rationally chosen to satisfy the different requirements needed for specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA