Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Bioact Mater ; 38: 1-30, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699243

RESUMO

Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.

2.
Anal Chem ; 96(6): 2425-2434, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291775

RESUMO

A high-throughput, rapid, and highly sensitive surface-enhanced Raman spectroscopy (SERS) microarray for screening multiple mycotoxins has been developed on a three-dimensional silver nanoparticle porous silicon (3D AgNP-Psi) SERS substrate, which was easy to be engineered by electrochemical etching and magnetron sputtering technology. The etching current density, etching waveform, and target material for magnetron sputtering have been investigated to obtain an optimal 3D SERS substrate. The optimized 3D AgNP-Psi SERS substrate showed an enhancement factor of 2.3 × 107 at 400 mA/cm2 constant current density etching for 20 s and Ag target magnetron sputtering for 200 nm thickness on the surface of Psi. The simulation electric field distribution showed the near-field enhancement can reach 3× higher than that of AuNPs. A protein microarray has been designed to screen multiple mycotoxins by AuNP Raman tags and a competitive immunoassay protocol on the surface of the 3D SERS substrate. The SERS protein microarray displayed wide linear detection ranges of 0.001-100 ng/mL for ochratoxin A, 0.01-100 ng/mL for aflatoxin B1, 0.001-10 ng/mL for deoxynivalenol, along with pg/mL low limit of detection, good recovery rates, repeatability, and reproducibility. The 3D SERS protein microarray is easily engineered and has a great potential application in medicine, environment, and food industry fields.


Assuntos
Nanopartículas Metálicas , Micotoxinas , Micotoxinas/análise , Silício/química , Prata/química , Nanopartículas Metálicas/química , Ouro/química , Reprodutibilidade dos Testes , Porosidade , Análise Espectral Raman/métodos , Imunoensaio/métodos
3.
Sci Adv ; 9(46): eadi6488, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967178

RESUMO

The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.


Assuntos
Biomimética , Alicerces Teciduais , Gravidez , Feminino , Humanos , Alicerces Teciduais/química , Útero/fisiologia , Matriz Extracelular/química , Engenharia Tecidual
4.
J Mol Cell Biol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968137

RESUMO

The transforming growth factor-beta (TGFß) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

5.
Anal Methods ; 15(43): 5803-5812, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37901988

RESUMO

Fluorescent boronate affinity molecules have gained increasing attention in the field of fluorescence sensing and detection due to their selective recognition capability towards cis-diol-containing molecules (cis-diols). However, the conventional fluorescent boronate affinity molecules face a challenge in differentiating the type of cis-diol only by their fluorescence responses. In this study, a simple method was used to discriminate different types of cis-diols, including nucleosides, nucleotides, sugars, and glycoproteins based on the phenylboronic acid-functionalized fluorescent molecules combined with principal component analysis (PCA). Both fluorescent molecules were simply synthesized by the covalent interaction between the amino group in 3-aminophenyl boronic acid and the isothiocyanate group in fluorescein or rhodamine B. In view of their fluorescence-responsive behaviors to these cis-diols directly, it is impossible to differentiate their types even under the optimized experimental conditions. When PCA was employed to treat the fluorescence response data and the quenching constants with their molecular weight, different types of cis-diols can be distinguished successfully. As a result, by integrating the fluorescence response of the boronate affinity probes with PCA, it can greatly improve the specific recognition capability of the boronic acids, providing a simple and direct way to distinguish and identify different types of cis-diols.


Assuntos
Nucleosídeos , Nucleotídeos , Análise de Componente Principal , Glicoproteínas
6.
Elife ; 122023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672386

RESUMO

While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection - the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.


Cells are powered by mitochondria, a group of organelles that produce chemical energy in the form of molecules called ATP. This energy is derived from the breakdown of carbohydrates, fats, and proteins. The number of mitochondria in a cell and the energy source they use to produce ATP varies depending on the type of cell. Mitochondria can also switch the molecules they use to produce energy when the cell is responding to stress or disease. The heart and the skeletal muscles ­ which allow movement ­ are two tissues that require large amounts of energy, but it remained unknown whether disrupting mitochondrial fuel selection affects how these tissues work. To answer these questions, Zheng, Li, Li et al. investigated the role of an enzyme found in mitochondria called Ptpmt1. Genetically deleting Ptpmt1 in the heart and skeletal muscle of mice showed that while the development of these organs was not affected, mitochondria in these cells switched from using carbohydrates to using fats as an energy source. Over time, this shift damaged both the mitochondria and the tissues, leading to muscle wasting, heart failure, and sudden death in the mice. This suggests that balanced use of carbohydrates and fats is essential for the muscles and heart. These findings imply that long-term use of medications that alter the fuel that mitochondria use may be detrimental to patients' health and could cause heart dysfunction. This may be important for future drug development, as well as informing decisions about medication taken in the clinic.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Ácidos Graxos , Glucose , Insuficiência Cardíaca/genética , Camundongos Knockout , Mitocôndrias , Atrofia Muscular
7.
Food Chem ; 426: 136570, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302304

RESUMO

Here, fluorescent artificial antibodies for sensing ovalbumin in food were synthesized by molecular imprinting technique in a microfluidic reactor. A phenylboronic acid-functionalized silane was employed as the functional monomer to enable the polymer has pH-responsive property. Fluorescent molecularly imprinted polymers (FMIPs) could be produced continuously in a short time. Both fluorescein isothiocyanate (FITC) and rhodamine B isothiocyanate (RB)-based FMIPs can specifically recognize the target ovalbumin, particularly FITC-based FMIP, giving an imprinting factor of 2.5 and cross-reactivity factors of 2.7 (ovotransferrin), 2.8 (ß-lactoglobulin) and 3.4 (bovine serum albumin), and was applied for the detection of ovalbumin in milk powder with recovery rates of 93-110%; moreover, the FMIP can be reused at least four times. Such FMIPs have promising future in replacing the fluorophore-labelled antibodies to fabricate fluorescent sensing devices or establish immunoassay methods, which have extra merits of low-cost, high stability and recyclability, easy to carry and store at ambient environments.


Assuntos
Impressão Molecular , Nanosferas , Fluoresceína-5-Isotiocianato , Dióxido de Silício , Ovalbumina , Microfluídica , Fluoresceína , Glicoproteínas , Concentração de Íons de Hidrogênio
8.
Food Chem ; 424: 136433, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37244192

RESUMO

The aim of this research was to develop a simple, rapid, sensitive, high-throughput detection method for foodborne Escherichia coli (E. coli) O157:H7 based on the aptamer-modified gold nanoparticles@macroporous magnetic silica photonic microsphere (Au@MMSPM). Such Au@MMSPM array system for E. coli O157:H7 not only integrated sample pretreatment with rapid detection, but also showed highly enhanced effect to develop a highly sensitive SERS assay. The established SERS assay platform gave a wide linear detection range (10-106 CFU/mL) and low limit of detection (2.20 CFU/mL) for E. coli O157:H7. The whole analysis time including sample pretreatment and detection was 110 min. This SERS-based assay platform provided a new high-throughput, highly sensitive and fast detection technology for monitoring E. coli O157:H7 in real samples from the fields of food industry, medicine and environment.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Dióxido de Silício , Ouro , Microesferas , Oligonucleotídeos , Fenômenos Magnéticos , Microbiologia de Alimentos
9.
Food Chem ; 423: 136339, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192558

RESUMO

A smartphone-based sensitive, rapid, label-free and high-throughput detection platform for Escherichia coli O157:H7 was established. The specific recognition capability of this platform was dependent of the aptamer modified on the silica photonic microsphere (SPM), whose structural colour was utilized for the quantification of the target bacterium. Gold nanoparticles and silver staining technique were employed to improve the sensitivity of the detection platform. Such smartphone-based detection platform gave a wide linear detection range of 102 âˆ¼ 108 CFU/mL with a low limit of detection (LOD) of 68 CFU/mL and high specificity for Escherichia coli O157:H7. Moreover, the recovery rates of the detection method were measured in the range of 99 âˆ¼ 108% in the milk, pork and purified water samples. Furthermore, the developed detection platform did not require complex sample pretreatment and could be easily manipulated, displaying great application potential in the fields of food safety, environmental monitoring and disease diagnosis.


Assuntos
Escherichia coli O157 , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Escherichia coli O157/isolamento & purificação , Cor , Microesferas , Calibragem , Nanopartículas Metálicas , Ouro/química
10.
Adv Healthc Mater ; 12(23): e2300519, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37062917

RESUMO

To reconstruct and restore the functions of the male urethra is a challenging task for urologists. The acellular matrix graft currently used in the clinics is mono-functional and may cause a series of complications including stricture, fibrosis, and stone formation. As a result, such graft materials cannot meet the increasing demand for multifunctionality in the field of urethral tissue engineering. In this context, a multifunctional urethral patch is designed for the repair of urethral defects by mixing protocatechualdehyde (PCA) with small intestinal submucosa (SIS) under an alkalin condition to allow cross linking. As shown, the PCA/SIS patch possesses excellent biocompatibility, antioxidant activity, and anti-inflammatory property. More importantly, this patch can remarkably promote the adhesion, proliferation, and directional extension of rabbit bladder epithelial mucous cells (R-EMCs) as well as rabbit bladder smooth muscle cells (R-SMCs), and upregulate the expression of cytokeratin in the EMCs and contractile protein in the SMCs in vitro. In vivo experiments also confirm that the PCA/SIS patch can significantly enhance scarless repair of urethral defects in rabbits by facilitating smooth muscle regeneration, reducing excessive collagen deposition, and accelerating re-epithelialization and neovascularization. Taken together, the newly developed multifunctional PCA/SIS patch provides a promising candidate for urethral regeneration.


Assuntos
Procedimentos de Cirurgia Plástica , Uretra , Animais , Masculino , Coelhos , Uretra/fisiologia , Uretra/cirurgia , Bexiga Urinária , Colágeno , Miócitos de Músculo Liso , Engenharia Tecidual
11.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903643

RESUMO

Due to the massive use and abuse of pesticides, practices which have led to serious threats to human health, the research community must develop on-site and rapid detection technology of pesticide residues to ensure food safety. Here, a paper-based fluorescent sensor, integrated with molecularly imprinted polymer (MIP) targeting glyphosate, was prepared by a surface-imprinting strategy. The MIP was synthesized by a catalyst-free imprinting polymerization technique and exhibited highly selective recognition capability for glyphosate. The MIP-coated paper sensor not only remained selective, but also displayed a limit of detection of 0.29 µmol and a linear detection range from 0.5 to 10 µmol. Moreover, the detection time only took about 5 min, which is beneficial for rapid detection of glyphosate in food samples. The detection accuracy of such paper sensor was good, with a spiked recovery rate of 92-117% in real samples. The fluorescent MIP-coated paper sensor not only has good specificity, which is helpful to reduce the food matrix interference and shorten the sample pretreatment time, but it also has the merits of high stability, low-cost and ease of operation and carrying, displaying great potential for application in the on-site and rapid detection of glyphosate for food safety.


Assuntos
Impressão Molecular , Resíduos de Praguicidas , Praguicidas , Humanos , Polímeros Molecularmente Impressos , Polímeros/química , Praguicidas/análise , Impressão Molecular/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Glifosato
12.
J Chromatogr A ; 1695: 463932, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36972663

RESUMO

Development of selective enrichment materials for the accurate analysis of ochratoxin a (OTA) in environmental and food samples is an effective way to protect human health. Here, a molecularly imprinted polymer (MIP) known as plastic antibody was synthesized onto the magnetic inverse opal photonic crystal microsphere (MIPCM) using a low-cost dummy template imprinting strategy targeting OTA. The MIP@MIPCM exhibited ultrahigh selectivity with an imprinting factor of 130, high specificity with cross-reactivity factors of 3.3-10.5, and large adsorption capacity of 60.5 µg/mg. Such MIP@MIPCM was used for selective capture of OTA in real samples which was quantified in combination with high-performance liquid chromatography, giving a wide linear detection range of 5-20,000 ng/mL, a detection limit of 0.675 ng/mL, and good recovery rates of 84-116%. Moreover, the MIP@MIPCM can be produced simply and rapidly and is very stable under different environmental conditions and easy to store and transport, so it is an ideal substitute of biological antibody modified materials for the selective enrichment of OTA in real samples.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Impressão Molecular/métodos , Microesferas , Polímeros/química , Cromatografia Líquida de Alta Pressão , Adsorção , Fenômenos Magnéticos
13.
Carbohydr Polym ; 305: 120546, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737196

RESUMO

To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.


Assuntos
Regeneração Óssea , Osteogênese , Celulose/farmacologia , Diferenciação Celular , Imunomodulação , Íons , Alicerces Teciduais
14.
J Agric Food Chem ; 71(6): 3050-3059, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734836

RESUMO

Rapid identification and quantitative simultaneous analysis for multiple pesticide in real samples based on surface-enhanced Raman spectroscopy (SERS) is still a challenge because of sample complexity, reproducibility, and stability of SERS substrate. With use of colloidal silver nanoparticles loaded three-dimensional (3D) silica photonic microspheres (SPMs) array as the analytical platform, a SERS-based array assay for multiple pesticides was developed in this work. The silver nanoparticles were fixed into the gaps formed by the self-assembled nanospheres of the 3D SPMs to produce "hot spots", on which the Raman enhanced effect was up to 9.86 × 107 and the maximum electric field enhancement effect reached to 9.75 times, ensuring the target pesticides on the surface of the SERS-substrate integrated SPM can be detected sensitively. Using 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate, and imidacloprid as the testing pesticides, the label-free and high-throughput SERS assay for simultaneous detection of the pesticides was established, giving good linear detection ranges (0.1-204.8 µg/mL for 2,4-D, 0.3-247.9 µg/mL for glyphosate, and 0.2-204.8 µg/mL for imidacloprid) and low detection limits (3.03 ng/mL for 2,4-D, 3.14 ng/mL for glyphosate, and 8.82 ng/mL for imidacloprid). The spiked recovery rates in the real samples were measured in the range of 82-112%, which was consistent with that of the classical standard methods. The label-free 3D SERS array analytical platform provides a powerful tool for high-throughput and low-cost screening of multiple pesticide residues in real samples.


Assuntos
Nanopartículas Metálicas , Praguicidas , Praguicidas/análise , Nanopartículas Metálicas/química , Dióxido de Silício , Microesferas , Reprodutibilidade dos Testes , Prata/química , Análise Espectral Raman/métodos , Ácido 2,4-Diclorofenoxiacético
15.
Food Chem ; 410: 135419, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623462

RESUMO

Development of multiple detection methods to monitor non-steroidal anti-inflammatory drugs (NSAIDs) in food is an effective way to protect human health. Here, we aimed to synthesize fluorescent artificial receptors by molecular imprinting technique to construct a simultaneous detection system targeting NSAIDs. Rhodamine B and fluorescein-functionalized silanes were employed as the fluorescence signal reporters for naproxen and ketoprofen, respectively. Two fluorescent molecularly imprinted polymers (FMIPs) were obtained with high specificity, giving cross-reactivity factors of 6.4-15.8 (naproxen) and 2.6-25.6 (ketoprofen). Both FMIPs also displayed rapid response time (5 min) and high sensitivity (detection limit at âˆ¼ nM level). A simultaneous detection system was constructed based on the FMIPs and applied for sensing the spiked NSAIDs in real samples, showing recoveries of 71-119 %, comparable with the HPLC methods (70-113 %). In summary, use of different FMIPs to construct simultaneous detection systems is practicable, and provides a flexible way for sensing multiple hazards in food samples.


Assuntos
Cetoprofeno , Impressão Molecular , Receptores Artificiais , Humanos , Naproxeno , Anti-Inflamatórios não Esteroides , Fluoresceína , Corantes , Impressão Molecular/métodos , Limite de Detecção
16.
Signal Transduct Target Ther ; 8(1): 41, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681678

RESUMO

Urinary stone is conceptualized as a chronic metabolic disorder punctuated by symptomatic stone events. It has been shown that the occurrence of calcium oxalate monohydrate (COM) during stone formation is regulated by crystal growth modifiers. Although crystallization inhibitors have been recognized as a therapeutic modality for decades, limited progress has been made in the discovery of effective modifiers to intervene with stone disease. In this study, we have used metabolomics technologies, a powerful approach to identify biomarkers by screening the urine components of the dynamic progression in a bladder stone model. By in-depth mining and analysis of metabolomics data, we have screened five differential metabolites. Through density functional theory studies and bulk crystallization, we found that three of them (salicyluric, gentisic acid and succinate) could effectively inhibit nucleation in vitro. We thereby assessed the impact of the inhibitors with an EG-induced rat model for kidney stones. Notably, succinate, a key player in the tricarboxylic acid cycle, could decrease kidney calcium deposition and injury in the model. Transcriptomic analysis further showed that the protective effect of succinate was mainly through anti-inflammation, inhibition of cell adhesion and osteogenic differentiation. These findings indicated that succinate may provide a new therapeutic option for urinary stones.


Assuntos
Cálculos Renais , Urolitíase , Animais , Ratos , Ácido Succínico/uso terapêutico , Osteogênese , Urolitíase/metabolismo , Cálculos Renais/tratamento farmacológico , Cálculos Renais/genética , Cálculos Renais/química , Succinatos/uso terapêutico
17.
Bioact Mater ; 24: 54-68, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36582347

RESUMO

Injection laryngoplasty with biomaterials is an effective technique to treat glottic insufficiency. However, the inadequate durability, deficient pro-secretion of extracellular matrix (ECM) and poor functional preservation of current biomaterials have yielded an unsatisfactory therapeutic effect. Herein, a self-fusing bioactive hydrogel comprising modified carboxymethyl chitosan and sodium alginate is developed through a dual-crosslinking mechanism (photo-triggered and dynamic covalent bonds). Owing to its characteristic networks, the synergistic effect of the hydrogel for vocal folds (VFs) vibration and phonation is adequately demonstrated. Notably, owing to its inherent bioactivity of polysaccharides, the hydrogel could significantly enhance the secretion of major components (type I/III collagen and elastin) in the lamina propria of the VFs both in vivo and in vitro. In a rabbit model for glottic insufficiency, the optimized hydrogel (C1A1) has demonstrated a durability far superior to that of the commercially made hyaluronic acid (HA) Gel. More importantly, owing to the ECM-inducing bioactivity, the physiological functions of the VFs treated with the C1A1 hydrogel also outperformed that of the HA Gel, and were similar to those of the normal VFs. Taken together, through a simple-yet-effective strategy, the novel hydrogel has demonstrated outstanding durability, ECM-inducing bioactivity and physiological function preservation, therefore has an appealing clinical value for treating glottic insufficiency.

18.
Anal Chem ; 94(51): 17939-17946, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36519631

RESUMO

We have demonstrated the proof-of-concept of a label-free fluorescence quantitative detection platform based on gold nanoparticle (AuNP) enhancement intrinsic fluorescence of protein on the silica photonic crystal microsphere (SPCM) array. The label-free one-step competitive fluorescence immunoassay protocol has been proposed on the surface of the SPCM. Aflatoxin B1 (AFB1) as a model molecule was detected by the newly established method. AFB1-bovine serum albumin and monoclonal antibodies (Abs) of anti-AFB1 have been immobilized on the surfaces of SPCMs and AuNPs, respectively. AuNPs remarkably enhanced the intrinsic fluorescence of artificial antigens on the surface of the SPCM at near UV excitation. The simulation of electric field distribution showed that the maximum value of the near-field enhancement |E/E0| of the SPCM with AuNPs could reach 20. The label-free fluorescence enhancement effect comes from the synergistic effects of photonic crystal effect and AuNP plasmon effect. Such a label-free fluorescence detection method can provide a linear detection range from 0.1 to 10 ng/mL with a limit of detection of 0.025 ng/mL and good specificity for AFB1. The recovery rates in the spiked cereal samples were measured in the range of 84.07 ± 5.71%-101.02 ± 5.13%, which were consistent with that of the traditional enzyme linked immunosorbent assay method. The label-free detection platform displays great application potential in biology, medicine, agriculture, food industry, chemical industry, energy source, and environmental protection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Microesferas , Ouro/química , Dióxido de Silício/química , Nanopartículas Metálicas/química , Ensaio de Imunoadsorção Enzimática , Aflatoxina B1/análise , Limite de Detecção
19.
NPJ Regen Med ; 7(1): 75, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550127

RESUMO

Reconstruction of complex cartilage defects has remained a great challenge for tissue engineering due to the lack of stem cells and chronic inflammation within the joint. In this study, we have developed an injectable pig cartilage-derived decellularized extracellular matrix (dECM) hydrogels for the repair of cartilage defects, which has shown sound biocompatibility and immunomodulatory capacity both in vitro and in vivo. The dECM hydrogels can enhance the chondrogenic differentiation of human urine-derived stem cells (USCs). As shown by in vitro experiment, the USCs in the dECM hydrogels have survived, proliferated, and produced a mass of cartilage-specific extracellular matrix containing collagen II and aggrecan. And the USCs-laden dECM hydrogels have shown the capacity to promote the secretion of extracellular matrix, modulate the immune response and promote cartilage regeneration in the rat model for cartilage defect.

20.
Mater Today Bio ; 17: 100468, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36340592

RESUMO

Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA