Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Microbiol ; 205(4): 120, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36928394

RESUMO

We applied fluorescence staining of Nile red, polymerase chain reaction (PCR), and carbon substrate utilization and pressure tolerance analysis to execute three-stage screening for potential polyhydroxyalkanoate (PHA) producers in the sludge samples of 21 large-scale wastewater treatment plants of city and industrial parks in Taiwan area. Total 35,429 colonies were grown on 196 plates, the screened 30 strains were subjected to 16S rRNA analysis, and 18 identified genera belonged to Proteobacteria (67%), Firmicutes (17%), and Actinomycetota (16%). The PHA accumulation results revealed that nine genera (50% of 18 screened) produced PHAs by limiting the nitrogen source and excess single carbon sources of glucose in an aerobic status. The PHA accumulation percentage was 1.44-58.77% at dry cell weight, and the theoretical yield from glucose was 0.52-58.76%. Our results indicate that our triple-screening method is promising for identifying a high biodiversity of PHA-accumulating bacteria from activated sludge for future industrial applications.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Carbono , Glucose , Reatores Biológicos/microbiologia
2.
Theranostics ; 12(3): 1173-1186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154481

RESUMO

Background: The cytoskeletal linker protein α-Catulin has been shown to be important for tumor progression in various cancers. However, its role in the regulation of cancer stemness remains unclear. Methods: Phenotypic effects of α-Catulin on the cancer stem cell (CSC)-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Yeast two-hybrid assay, co-immunoprecipitation assay, and cycloheximide chase assay were performed to confirm the effect of α-Catulin on the WWP1-mediated degradation of KLF5. CPTAC and TCGA database were analyzed to determine the clinical association of α-Catulin, KLF5, and stemness-associated signatures in lung adenocarcinoma. Results: We report that α-Catulin increases cancer stem-like properties in non-small cell lung cancer (NSCLC). The expression of α-Catulin is elevated in tumor spheres compared to sphere-derived adherent cells and promotes the acquisition of cancer stemness characteristics in vitro and in vivo. Mechanistically, the interaction of α-Catulin and the C-terminal region of Kruppel-like transcription factor KLF5 results in the inhibition of WWP1-mediated degradation of KLF5. Accordingly, increased protein expression of KLF5 is observed in clinical specimens of lung adenocarcinoma with high expression of α-Catulin compared to specimens with low α-Catulin-expression. Knockdown of KLF5 abrogates α-Catulin-driven cancer stemness. α-Catulin is known to interact with integrin-linked kinase (ILK). Notably, an ILK inhibitor disrupts the α-Catulin-KLF5 interaction, promotes the degradation of KLF5, and decreases α-Catulin-driven cancer stemness. Importantly, we identify a CTNNAL1/ILK/KLF5 three-gene signature for predicting poor overall survival in patients with lung adenocarcinoma. Conclusions: These findings reveal a molecular basis of α-Catulin-enhanced KLF5 signaling and highlight a role for α-Catulin in promoting cancer stemness.


Assuntos
Adenocarcinoma de Pulmão , Fatores de Transcrição Kruppel-Like , Neoplasias Pulmonares , Ubiquitina-Proteína Ligases , alfa Catenina , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ubiquitina-Proteína Ligases/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
3.
Appl Radiat Isot ; 161: 109162, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32561130

RESUMO

The objective of this study was to evaluate radiolabeled DOTA-SP90 as a radiotracer for breast cancer. The in vitro competition assay showed that radiolabeled DOTA-SP90 had significant binding affinity to BT-483 cancer cells. Biodistribution, nanoSPECT/CT and nanoPET/CT imaging results indicated that radiolabeled DOTA-SP90 can accumulate in tumors. In addition, radiolabeled DOTA-SP90 peptides can also detect metastatic tumors. Therefore, radiolabeled SP90 peptide may provide the potential capability as diagnostic agent for breast cancer patients.


Assuntos
Neoplasias da Mama/diagnóstico , Radioisótopos de Gálio/farmacocinética , Radioisótopos de Índio/farmacocinética , Oligopeptídeos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Compostos Heterocíclicos com 1 Anel/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Imagem Multimodal , Oligopeptídeos/química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Ther Nucleic Acids ; 18: 991-998, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31778957

RESUMO

Galectin-1 (Gal-1) is a pleiotropic homodimeric ß-galactoside-binding protein with a single carbohydrate recognition domain. It has been implicated in several biological processes that are important during tumor progression. Several lines of evidence have indicated that Gal-1 is involved in cancer immune escape and induces T cell apoptosis. These observations all emphasized Gal-1 as a novel target for cancer immunotherapy. Here, we developed a novel Gal-1-targeting DNA aptamer (AP-74 M-545) and demonstrated its antitumor effect by restoring immune function. AP-74 M-545 binds to Gal-1 with high affinity. AP-74 M-545 targets tumors in murine tumor models but suppresses tumor growth only in immunocompetent C57BL/6 mice, not in immunocompromised non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Immunohistochemistry revealed increased CD4+ and CD8+ T cells in AP-74 M-545-treated tumor tissues. AP-74 M-545 suppresses T cell apoptosis by blocking the binding of Gal-1 to CD45, the main receptor and apoptosis mediator of Gal-1 on T cells. Collectively, our data suggest that the Gal-1 aptamer suppresses tumor growth by blocking the interaction between Gal-1 and CD45 to rescue T cells from apoptosis and restores T cell-mediated immunity. These results indicate that AP-74 M-545 may be a potential strategy for cancer immunotherapy.

5.
Oncotarget ; 7(39): 62925-62938, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-26910837

RESUMO

Ovarian clear cell carcinoma (OCCC) is an aggressive neoplasm with a high recurrence rate that frequently develops resistance to platinum-based chemotherapy. There are few prognostic biomarkers or targeted therapies exist for patients with OCCC. Here, we identified that FXYD2, the modulating subunit of Na+/K+-ATPases, was highly and specifically expressed in clinical OCCC tissues. The expression levels of FXYD2 were significantly higher in advanced-stage of OCCC and positively correlated with patients' prognoses. Silencing of FXYD2 expression in OCCC cells inhibited Na+/K+-ATPase enzyme activity and suppressed tumor growth via induction of autophagy-mediated cell death. We found that high FXYD2 expression in OCCC was transcriptionally regulated by the transcriptional factor HNF1B. Furthermore, up-regulation of FXYD2 expression significantly increased the sensitivity of OCCC cells to cardiac glycosides, the Na+/K+-ATPase inhibitors. Two cardiac glycosides, digoxin and digitoxin, had a great therapeutic efficacy in OCCC cells in vitro and in vivo. Taken together, our results demonstrate that FXYD2 is functionally upregulated in OCCC and may serve as a promising prognostic biomarker and therapeutic target of cardiac glycosides in OCCC.


Assuntos
Adenocarcinoma de Células Claras/metabolismo , Glicosídeos Cardíacos/farmacologia , Neoplasias Ovarianas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Adenocarcinoma de Células Claras/patologia , Autofagia , Biomarcadores Tumorais/metabolismo , Morte Celular , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Ovarianas/patologia , Prognóstico , Regulação para Cima
6.
Oncotarget ; 7(1): 386-401, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26561205

RESUMO

Melanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation. MDA-9/Syntenin uses its PDZ1 domain to bind with Slug, and this interaction further leads to HDAC1 recruitment, up-regulation of Slug transcriptional repressor activity, enhanced Slug-mediated EMT, and promotion of cancer invasion and metastasis. The PDZ domains and nuclear localization of MDA-9/Syntenin are both required for promoting Slug-mediated cancer invasion. Clinically, patients with high MDA-9/Syntenin and high Slug expressions were associated with poor overall survival compared to those with low expression in lung adenocarcinomas. Our findings provide evidence that MDA-9/Syntenin acts as a pivotal adaptor of Slug and it transcriptionally enhances Slug-mediated EMT to promote cancer invasion and metastasis.


Assuntos
Adenocarcinoma/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Sinteninas/genética , Fatores de Transcrição/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células MCF-7 , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Confocal , Invasividade Neoplásica , Metástase Neoplásica , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Análise de Sobrevida , Sinteninas/metabolismo , Fatores de Transcrição/metabolismo , Transplante Heterólogo
7.
J Invest Dermatol ; 135(1): 258-268, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25007042

RESUMO

Myofibroblasts have a key role in wound healing by secreting growth factors and chemoattractants to create new substrates and proteins in the extracellular matrix. We have found that galectin-1, a ß-galactose-binding lectin involved in many physiological functions, induces myofibroblast activation; however, the mechanism remains unclear. Here, we reveal that galectin-1-null (Lgals1(-/-)) mice exhibited a delayed cutaneous wound healing response. Galectin-1 induced myofibroblast activation, migration, and proliferation by triggering intracellular reactive oxygen species (ROS) production. A ROS-producing protein, NADPH oxidase 4 (NOX4), was upregulated by galectin-1 through the neuropilin-1/Smad3 signaling pathway in myofibroblasts. Subcutaneous injection of galectin-1 into wound areas accelerated the healing of general and pathological (streptozotocin-induced diabetes mellitus) wounds and decreased the mortality of diabetic mice with skin wounds. These findings indicate that galectin-1 is a key regulator of wound repair that has therapeutic potential for pathological or imperfect wound healing.


Assuntos
Fibroblastos/metabolismo , Galectina 1/metabolismo , NADPH Oxidases/metabolismo , Neuropilina-1/metabolismo , Proteína Smad3/metabolismo , Cicatrização/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Fibroblastos/citologia , Galectina 1/genética , Galectina 1/farmacologia , Gengiva/citologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 4 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/lesões , Pele/metabolismo , Cicatrização/efeitos dos fármacos
8.
Cancer Res ; 73(1): 428-38, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047866

RESUMO

α-Catulin is an oncoprotein that helps sustain proliferation by preventing cellular senescence. Here, we report that α-catulin also drives malignant invasion and metastasis. α-Catulin was upregulated in highly invasive non-small cell lung cancer (NSCLC) cell lines, where its ectopic expression or short-hairpin RNA-mediated attenuation enhanced or limited invasion or metastasis, respectively. α-Catulin interacted with integrin-linked kinase (ILK), a serine/threonine protein kinase implicated in cancer cell proliferation, antiapoptosis, invasion, and angiogenesis. Attenuation of ILK or α-catulin reciprocally blocked cell migration and invasion induced by the other protein. Mechanistic investigations revealed that α-catulin activated Akt-NF-κB signaling downstream of ILK, which in turn led to increased expression of fibronectin and integrin αvß3. Pharmacologic or antibody-mediated blockade of NF-κB or αvß3 was sufficient to inhibit α-catulin-induced cell migration and invasion. Clinically, high levels of expression of α-catulin and ILK were associated with poor overall survival in patients with NSCLC. Taken together, our study shows that α-catulin plays a critical role in cancer metastasis by activating the ILK-mediated Akt-NF-κB-αvß3 signaling axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica/patologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/patologia , Ativação Enzimática/fisiologia , Humanos , Integrina alfaVbeta3 , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Técnicas do Sistema de Duplo-Híbrido , alfa Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA