Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Prog Lipid Res ; 93: 101265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979798

RESUMO

Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.


Assuntos
Doenças Cardiovasculares , Doenças do Sistema Nervoso , Humanos , Oxilipinas/metabolismo , Apolipoproteína E4/metabolismo , Lipoproteínas/metabolismo , Doenças Cardiovasculares/metabolismo
2.
J Am Heart Assoc ; 12(1): e026901, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583428

RESUMO

Background Cerebral small vessel disease is associated with higher ratios of soluble-epoxide hydrolase derived linoleic acid diols (12,13-dihydroxyoctadecenoic acid [DiHOME] and 9,10-DiHOME) to their parent epoxides (12(13)-epoxyoctadecenoic acid [EpOME] and 9(10)-EpOME); however, the relationship has not yet been examined in stroke. Methods and Results Participants with mild to moderate small vessel stroke or large vessel stroke were selected based on clinical and imaging criteria. Metabolites were quantified by ultra-high-performance liquid chromatography-mass spectrometry. Volumes of stroke, lacunes, white matter hyperintensities, magnetic resonance imaging visible perivascular spaces, and free water diffusion were quantified from structural and diffusion magnetic resonance imaging (3 Tesla). Adjusted linear regression models were used for analysis. Compared with participants with large vessel stroke (n=30), participants with small vessel stroke (n=50) had a higher 12,13-DiHOME/12(13)-EpOME ratio (ß=0.251, P=0.023). The 12,13-DiHOME/12(13)-EpOME ratio was associated with more lacunes (ß=0.266, P=0.028) but not with large vessel stroke volumes. Ratios of 12,13-DiHOME/12(13)-EpOME and 9,10-DiHOME/9(10)-EpOME were associated with greater volumes of white matter hyperintensities (ß=0.364, P<0.001; ß=0.362, P<0.001) and white matter MRI-visible perivascular spaces (ß=0.302, P=0.011; ß=0.314, P=0.006). In small vessel stroke, the 12,13-DiHOME/12(13)-EpOME ratio was associated with higher white matter free water diffusion (ß=0.439, P=0.016), which was specific to the temporal lobe in exploratory regional analyses. The 9,10-DiHOME/9(10)-EpOME ratio was associated with temporal lobe atrophy (ß=-0.277, P=0.031). Conclusions Linoleic acid markers of cytochrome P450/soluble-epoxide hydrolase activity were associated with small versus large vessel stroke, with small vessel disease markers consistent with blood brain barrier and neurovascular-glial disruption, and temporal lobe atrophy. The findings may indicate a novel modifiable risk factor for small vessel disease and related neurodegeneration.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Humanos , Ácido Linoleico , Oxilipinas , Epóxido Hidrolases , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Atrofia , Água
3.
Int J Food Microbiol ; 383: 109938, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36202011

RESUMO

Fungal spoilage limits the shelf life of fermented dairy products. To address the problem, this study explores the potential of lactic acid bacteria as antifungal adjunct cultures in dairy matrices. Strains of lactic acid bacteria (113) representing 19 species were screened for their activity against Penicillium caseifulvum, Aspergillus clavatus and Mucor racemosus in modified MRS medium, milk, and yogurt. Strains of Lactiplantibacillus plantarum, Furfurilactobacillus milii, and Lentilactobacillus parabuchneri inhibited the growth of mycelial fungi. The inhibitory effects of lactic acid bacteria against yeasts were also determined in yogurt with Candida sake, Saccharomyces bayanus, and Torulaspora delbrueckii as challenge strains. The inhibition of yeasts by lactic acid bacteria was strain-specific and unrelated to the activity towards mycelial fungi. Organic acids and hydroxy fatty acids were quantified by liquid chromatograph coupled with refractive index detector and tandem mass spectrometry, respectively. Principal component analysis indicated 10-OH 18: 1 fatty acids and acetate are the main antifungal metabolites and explained over 50 % of the antifungal activity. The correlation analysis of metabolites and mold-free shelf life of milk and yogurt confirmed the role of these compounds. The genomic study analysed genes related to the production of major antifungal metabolites and predicted the formation of 1,2-propanediol and acetate but not of hydroxy unsaturated fatty acids. The findings provide new perspectives on the selection of antifungal strains, the characterization of antifungal metabolites and the exploration of antifungal mechanisms among different species.


Assuntos
Lactobacillales , Lactobacillales/metabolismo , Antifúngicos/farmacologia , Fermentação , Propilenoglicol/metabolismo , Lactobacillaceae/metabolismo , Leveduras/metabolismo , Acetatos/metabolismo , Ácidos Graxos/metabolismo
4.
Environ Toxicol Pharmacol ; 93: 103875, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550873

RESUMO

Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total (i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically, 9-hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols (11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase activation, suggesting adaptive immune changes in lipid mediator pathways involved in inflammation resolution.


Assuntos
Poluição do Ar , Ácido Linoleico , Animais , Epóxido Hidrolases , Feminino , Inflamação/metabolismo , Oxilipinas/metabolismo , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34403987

RESUMO

The oxidation of dietary linoleic acid (LA) produces oxidized LA metabolites (OXLAMs) known to regulate multiple signaling pathways in vivo. Recently, we reported that feeding OXLAMs to mice resulted in liver inflammation and apoptosis. However, it is not known whether this is due to a direct effect of OXLAMs accumulating in the liver, or to their degradation into bioactive shorter chain molecules (e.g. aldehydes) that can provoke inflammation and related cascades. To address this question, mice were fed a low or high LA diet low in OXLAMs, or a low LA diet supplemented with OXLAMs from heated corn oil (high OXLAM diet). Unesterified oxidized fatty acids (i.e. oxylipins), including OXLAMs, were measured in liver after 8 weeks of dietary intervention using ultra-high pressure liquid chromatography coupled to tandem mass-spectrometry. The high OXLAM diet did not alter liver oxylipin concentrations compared to the low LA diet low in OXLAMs. Significant increases in several omega-6 derived oxylipins and reductions in omega-3 derived oxylipins were observed in the high LA dietary group compared to the low LA group. Our findings suggest that dietary OXLAMs do not accumulate in liver, and likely exert pro-inflammatory and pro-apoptotic effects via downstream secondary metabolites.


Assuntos
Ácido Linoleico/metabolismo , Fígado/metabolismo , Oxilipinas/metabolismo , Animais , Ácido Araquidônico/metabolismo , Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácido Linoleico/farmacologia , Fígado/efeitos dos fármacos , Camundongos , Oxirredução
6.
Artigo em Inglês | MEDLINE | ID: mdl-33957356

RESUMO

Gangliosides play critical roles in the development of many progressive diseases. Due to their structural diversity, efficient methods are needed to separate individual gangliosides for studies of their functions, and for use as standards in the analysis of ganglioside mixtures. This proof-of-concept study reports a useful analytical-semi-preparative scale counter-current chromatography (CCC) enrichment of multiple ganglioside homologues of various species and classes at the milligram level. Since few individual ganglioside standards were available, this research aimed to achieve analytical-semi-preparative scale separation of gangliosides by differences in saccharide monomer compositions (classes), their arrangements (species), or ceramide compositions (homologues), using CCC. The solvent system composition, addition of solvent modifiers, and elution modes were all adjusted to separate porcine gangliosides, mainly GM1 (d36:1), GD1a (d36:1), GD1b (d36:1) and their (d38:1) homologues as a demonstration. The eluted compounds were analyzed by flow-injection analysis (FIA)-MS and LC-MS/MS. A two-phase solvent system, consisting of butanol/methyl t-butyl ether/acetonitrile/water at a ratio of 2:4:3:8 (v/v/v/v) with 0.5% (v/v) acetic acid added to the lower phase, was used to separate mg-levels of porcine gangliosides under dual-mode elution. The relative abundances of the above 6 gangliosides increased from 10 to 21% in the ganglioside extract to 55-73% in the collected fractions through the purification.


Assuntos
Distribuição Contracorrente/métodos , Gangliosídeos/isolamento & purificação , Animais , Gangliosídeos/análise , Gangliosídeos/química , Solventes/química , Suínos
7.
Food Microbiol ; 98: 103720, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875197

RESUMO

Strains of Limosilactobacillus reuteri are used as starter and bioprotective cultures and contribute to the preservation of food through the production of fermentation metabolites lactic and acetic acid, and of the antimicrobial reuterin. Reuterin consists of acrolein and 3-hydroxypropionaldehyde (3-HPA), which can be further metabolized to 1,3-propanediol and 3-hydroxypropionic acid (3-HP). While reuterin has been the focus of many investigations, the contribution of 3-HP to the antimicrobial activity of food related reuterin-producers is unknown. We show that the antibacterial activity of 3-HP was stronger at pH 4.8 compared to pH 5.5 and 6.6. Gram-positive bacteria were in general more resistant against 3-HP and propionic acid than Gram-negative indicator strains including common food pathogens, while spoilage yeast and molds were not inhibited by ≤ 640 mM 3-HP. The presence of acrolein decreased the minimal inhibitory activity of 3-HP against E. coli indicating synergistic antibacterial activity. 3-HP was formed during the growth of the reuterin-producers, and by resting cells of L. reuteri DSM 20016. Taken together, this study shows that food-related reuterin producers strains synthesize a second antibacterial compound, which might be of relevance when strains are added as starter or bioprotective cultures to food products.


Assuntos
Anti-Infecciosos/farmacologia , Glicerol/metabolismo , Ácido Láctico/análogos & derivados , Lactobacillaceae/química , Ácido Acético/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Estabilidade de Medicamentos , Fermentação , Microbiologia de Alimentos , Gliceraldeído/análogos & derivados , Gliceraldeído/química , Gliceraldeído/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/metabolismo , Propano/química , Propano/metabolismo
8.
J Agric Food Chem ; 68(32): 8648-8657, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672946

RESUMO

The quality of fermented sausage is strongly influenced by its fatty acid (FA). However, the role of a defined starter culture in modifying sausage FA composition, and especially in the production of hydroxy FAs (HFAs), has not been determined. In this study, the FA compositions of sausages fermented with Latilactobacillus sakei, with L. sakei plus Staphylococcus carnosus, and with an aseptic control were characterized by liquid chromatography-mass spectrometry (MS)/MS and gas chromatography-MS. The sausages fermented with L. sakei, and with L. sakei plus S. carnosus, showed a reduced accumulation of poly and/or diunsaturated FAs and distinct composition of HFAs compared to the aseptic control. 2-HFAs were enriched via high-speed counter-current chromatography and identified uniquely in the L. sakei plus S. carnosus fermented sausage. Through lipid analyses, this study illustrated how the choice of a defined starter culture affected the observed FA metabolism in fermented sausages, facilitating the development of starter cultures or additives that impart desirable characteristics to sausage.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Produtos da Carne/análise , Animais , Fermentação , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Lactobacillus/metabolismo , Produtos da Carne/microbiologia , Staphylococcus/metabolismo , Suínos
9.
Food Res Int ; 134: 109237, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517955

RESUMO

This study investigated the relationships between the structures of hydroxy unsaturated fatty acids (HUFA) and their antifungal activities. Structurally diverse HUFA, including four monohydroxy-18:1 isomers, two monohydroxy 18:2 isomers and two monohydroxy 18:2 isomers were extracted from seeds of plants (Coriaria nepalensis, Thymus vulgaris, Mallotus philippensis and Dimorphotheca sinuata) for which information was available on PlantFAdb database, and from culture supernatants of lactobacilli. They were purified by high-speed counter current chromatography (HSCCC) and identified by LC-MS/MS. The minimum inhibitory concentrations of HUFA were tested against a panel of five yeasts and five mycelial fungi. The membrane phase changes under HUFA treatment and the content of ergosterol were both measured to differentiate HUFA-sensitive and HUFA-resistant fungi. HUFA with a hydroxyl group near the center of the 18-carbon fatty acid chains were found to contribute strongly to HUFA antifungal activity. Antifungal HUFA targeted filamentous fungi but not yeasts. HUFA didn't alter the overall membrane fluidity of sensitive fungi, but the most HUFA-sensitive fungi had a lower average ergosterol content compared to the resistant yeasts. This indicates the possible interaction of HUFA with fungal membrane with low sterol content, which partially support the previous proposed mode of action. Findings here provide insight on further development of HUFA application in food products.


Assuntos
Antifúngicos , Espectrometria de Massas em Tandem , Antifúngicos/farmacologia , Cromatografia Líquida , Ácidos Graxos Insaturados , Relação Estrutura-Atividade
10.
Int J Food Microbiol ; 302: 8-14, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30220438

RESUMO

Fungal spoilage of bread remains an unsolved issue in bread making. This work aims to identify alternative strategies to conventional preservatives in order to prevent or delay fungal spoilage of bread. The minimum inhibitory concentration (MIC) of bacterial metabolites and chemical preservatives was evaluated in vitro, and compared to their in situ activity in baking trials. Calcium propionate, sorbic acid, 3-phenyllactic acid, ricinoleic acid, and acetic acid were tested both individually and in combination at their MIC values against Aspergillus niger and Penicillium roqueforti. The combination of acetic acid with propionate and sorbate displayed additive effects against the two fungi. For these reasons, we introduced sourdough fermentation with specific strains of lactobacilli, using wheat or flaxseed, in order to generate acetate in bread. A combination of Lactobacillus hammesii and propionate reduced propionate concentration required for shelf life extension of wheat bread 7-fold. Flaxseed sourdough bread fermented with L. hammesii, excluding any preservative, showed a shelf life 2 days longer than the control bread. The organic acid quantification indicated a higher production of acetic acid (33.8 ±â€¯4.4 mM) when compared to other sourdough breads. Addition of 4% of sucrose to sourdough fermentation with L. brevis increased the mould free shelf-life of bread challenged with A. niger by 6 days. The combination of L. hammesii sourdough and the addition of ricinoleic acid (0.15% or 0.08%) prolonged the mould free shelf-life by 7-8 days for breads produced with wheat sourdoughs. In conclusion, the in vitro MIC of bacterial metabolites and preservatives matched the in situ antifungal effect. Of the different bacterial metabolites evaluated, acetic acid had the most prominent and consistent antifungal activity. The use of sourdough fermentation with selected strains able to produce acetic acid allowed reducing the use of chemical preservatives.


Assuntos
Antifúngicos/farmacologia , Pão/microbiologia , Microbiologia de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/metabolismo , Fermentação , Lactatos/farmacologia , Lactobacillus/metabolismo , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Propionatos/farmacologia , Ácido Sórbico/farmacologia , Triticum/microbiologia
11.
J Agric Food Chem ; 65(51): 11229-11236, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29224354

RESUMO

Hydroxy unsaturated fatty acids (HUFA) can function as antifungal agents. To investigate the antifungal spectrum, that is, the scope of the in vitro fungal-inhibition activities of HUFA and their potential applications, three HUFA were produced by microbial transformation or extracted from plant-seed oils; these compounds included coriolic acid (13-hydroxy-9,11-octadecadienoic acid) from Coriaria seed oil, 10-hydroxy-12-octadecenoic acid from cultures of Lactobacillus hammesii, and 13-hydroxy-9-octadecenoic acid from cultures of Lactobacillus plantarum TMW1.460Δlah. HUFA were purified by high-speed counter-current chromatography (HSCCC), characterized by LC-MS and MS/MS, and their antifungal activities were evaluated with 15 indicator fungal strains. The HUFA had different antifungal spectra when compared with unsaturated fatty acids with comparable structures but without hydroxy groups. The inhibitory effects of HUFA specifically targeted filamentous fungi, including Aspergillus niger and Penicillium roqueforti, whereas yeasts, including Candida spp. and Saccharomyces spp., were resistant to HUFA. The findings here support the development of food applications for antifungal HUFA.


Assuntos
Antifúngicos/isolamento & purificação , Ácidos Graxos Insaturados/farmacologia , Lactobacillus/química , Magnoliopsida/química , Óleos de Plantas/isolamento & purificação , Sementes/química , Antifúngicos/química , Antifúngicos/farmacologia , Distribuição Contracorrente , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Fungos/efeitos dos fármacos , Lactobacillus plantarum/química , Testes de Sensibilidade Microbiana , Óleos de Plantas/química , Óleos de Plantas/farmacologia
12.
Biomed Res Int ; 2016: 2389895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27595097

RESUMO

Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration.


Assuntos
Substitutos Ósseos/química , Indóis/química , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Biomimética , Regeneração Óssea , Materiais Revestidos Biocompatíveis , Humanos , Camundongos , Osteogênese , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA