Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell Rep ; 42(12): 113505, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041810

RESUMO

The composite material-like extracellular matrix (ECM) in the sinoatrial node (SAN) supports the native pacemaking cardiomyocytes (PCMs). To test the roles of SAN ECM in the PCM phenotype and function, we engineered reconstructed-SAN heart tissues (rSANHTs) by recellularizing porcine SAN ECMs with hiPSC-derived PCMs. The hiPSC-PCMs in rSANHTs self-organized into clusters resembling the native SAN and displayed higher expression of pacemaker-specific genes and a faster automaticity compared with PCMs in reconstructed-left ventricular heart tissues (rLVHTs). To test the protective nature of SAN ECMs under strain, rSANHTs and rLVHTs were transplanted onto the murine thoracic diaphragm to undergo constant cyclic strain. All strained-rSANHTs preserved automaticity, whereas 66% of strained-rLVHTs lost their automaticity. In contrast to the strained-rLVHTs, PCMs in strained-rSANHTs maintained high expression of key pacemaker genes (HCN4, TBX3, and TBX18). These findings highlight the promotive and protective roles of the composite SAN ECM and provide valuable insights for pacemaking tissue engineering.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Camundongos , Animais , Suínos , Miócitos Cardíacos/metabolismo , Ventrículos do Coração , Fenótipo
2.
iScience ; 26(4): 106302, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36950112

RESUMO

Cardiac in vitro models have become increasingly obtainable and affordable with the optimization of human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) differentiation. However, these CMs are immature compared to their in vivo counterparts. Here we study the cellular phenotype of hPSC-CMs by comparing their single-cell gene expression and functional profiles in three engineered cardiac tissue configurations: human ventricular (hv) cardiac anisotropic sheet, cardiac tissue strip, and cardiac organoid chamber (hvCOC), with spontaneously aggregated 3D cardiac spheroids (CS) as control. The CM maturity was found to increase with increasing levels of complexity of the engineered tissues from CS to hvCOC. The contractile components are the first function to mature, followed by electrophysiology and oxidative metabolism. Notably, the 2D tissue constructs show a higher cellular organization whereas metabolic maturity preferentially increases in the 3D constructs. We conclude that the tissue engineering models resembling configurations of native tissues may be reliable for drug screening or disease modeling.

4.
Curr Cardiol Rep ; 23(6): 72, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34050853

RESUMO

PURPOSE OF REVIEW: Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS: Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Arritmias Cardíacas , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Miócitos Cardíacos , Transplante de Células-Tronco
5.
Pflugers Arch ; 473(3): 477-489, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624131

RESUMO

Small-conductance Ca2+-activated K+ (SK, KCa2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca2+. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease.


Assuntos
Cardiopatias/metabolismo , Coração/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Humanos
6.
J Mol Cell Cardiol ; 153: 106-110, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33373642

RESUMO

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic as declared by World Health Organization (WHO). In the absence of an effective treatment, different drugs with unknown effectiveness, including antimalarial hydroxychloroquine (HCQ), with or without concurrent administration with azithromycin (AZM), have been tested for treating COVID-19 patients with developed pneumonia. However, the efficacy and safety of HCQ and/or AZM have been questioned by recent clinical reports. Direct effects of these drugs on the human heart remain very poorly defined. To better understand the mechanisms of action of HCQ +/- AZM, we employed bioengineered human ventricular cardiac tissue strip (hvCTS) and anisotropic sheet (hvCAS) assays, made with human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCMs), which have been designed for measuring cardiac contractility and electrophysiology, respectively. Our hvCTS experiments showed that AZM induced a dose-dependent negative inotropic effect which could be aggravated by HCQ; electrophysiologically, as revealed by the hvCAS platform, AZM prolonged action potentials and induced spiral wave formations. Collectively, our data were consistent with reported clinical risks of HCQ and AZM on QTc prolongation/ventricular arrhythmias and development of heart failure. In conclusion, our study exposed the risks of HCQ/AZM administration while providing mechanistic insights for their toxicity. Our bioengineered human cardiac tissue constructs therefore provide a useful platform for screening cardiac safety and efficacy when developing therapeutics against COVID-19.


Assuntos
Arritmias Cardíacas/patologia , Azitromicina/efeitos adversos , Cloroquina/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Contração Miocárdica , Miócitos Cardíacos/patologia , Função Ventricular/efeitos dos fármacos , Antibacterianos/efeitos adversos , Antimaláricos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/patologia , Engenharia Tecidual/métodos , Tratamento Farmacológico da COVID-19
7.
Stem Cell Res ; 49: 102043, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128951

RESUMO

Directed cardiomyogenesis from human induced pluripotent stem cells (hiPSCs) has been greatly improved in the last decade but directed differentiation to pacemaking cardiomyocytes (CMs) remains incompletely understood. In this study, we demonstrated that inhibition of NODAL signaling by a specific NODAL inhibitor (SB431542) in the cardiac mesoderm differentiation stage downregulated PITX2c, a transcription factor that is known to inhibit the formation of the sinoatrial node in the left atrium during cardiac development. The resulting hiPSC-CMs were smaller in cell size, expressed higher pro-pacemaking transcription factors, TBX3 and TBX18, and exhibited pacemaking-like electrophysiological characteristics compared to control hiPSC-CMs differentiated from established Wnt-based protocol. The pacemaker-like subtype increased up to 2.4-fold in hiPSC-CMs differentiated with the addition of SB431542 relative to the control. Hence, Nodal inhibition in the cardiac mesoderm stage promoted pacemaker-like CM differentiation from hiPSCs. Improving the yield of human pacemaker-like CMs is a critical first step in the development of functional human cell-based biopacemakers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Marca-Passo Artificial , Potenciais de Ação , Diferenciação Celular , Células Cultivadas , Humanos , Miócitos Cardíacos
8.
Stem Cells Transl Med ; 9(12): 1570-1584, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32790136

RESUMO

Stem cell replacement offers a great potential for cardiac regenerative therapy. However, one of the critical barriers to stem cell therapy is a significant loss of transplanted stem cells from ischemia and inflammation in the host environment. Here, we tested the hypothesis that inhibition of the soluble epoxide hydrolase (sEH) enzyme using sEH inhibitors (sEHIs) to decrease inflammation and fibrosis in the host myocardium may increase the survival of the transplanted human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in a murine postmyocardial infarction model. A specific sEHI (1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea [TPPU]) and CRISPR/Cas9 gene editing were used to test the hypothesis. TPPU results in a significant increase in the retention of transplanted cells compared with cell treatment alone. The increase in the retention of hiPSC-CMs translates into an improvement in the fractional shortening and a decrease in adverse remodeling. Mechanistically, we demonstrate a significant decrease in oxidative stress and apoptosis not only in transplanted hiPSC-CMs but also in the host environment. CRISPR/Cas9-mediated gene silencing of the sEH enzyme reduces cleaved caspase-3 in hiPSC-CMs challenged with angiotensin II, suggesting that knockdown of the sEH enzyme protects the hiPSC-CMs from undergoing apoptosis. Our findings demonstrate that suppression of inflammation and fibrosis using an sEHI represents a promising adjuvant to cardiac stem cell-based therapy. Very little is known regarding the role of this class of compounds in stem cell-based therapy. There is consequently an enormous opportunity to uncover a potentially powerful class of compounds, which may be used effectively in the clinical setting.


Assuntos
Epóxido Hidrolases/uso terapêutico , Fibrose/terapia , Inflamação/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Epóxido Hidrolases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD
9.
Stem Cells ; 38(3): 390-394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31778240

RESUMO

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have many promising applications, including the regeneration of injured heart muscles, cardiovascular disease modeling, and drug cardiotoxicity screening. Current differentiation protocols yield a heterogeneous cell population that includes pluripotent stem cells and different cardiac subtypes (pacemaking and contractile cells). The ability to purify these cells and obtain well-defined, controlled cell compositions is important for many downstream applications; however, there is currently no established and reliable method to identify hiPSC-derived cardiomyocytes and their subtypes. Here, we demonstrate that second harmonic generation (SHG) signals generated directly from the myosin rod bundles can be a label-free, intrinsic optical marker for identifying hiPSC-derived cardiomyocytes. A direct correlation between SHG signal intensity and cardiac subtype is observed, with pacemaker-like cells typically exhibiting ~70% less signal strength than atrial- and ventricular-like cardiomyocytes. These findings suggest that pacemaker-like cells can be separated from the heterogeneous population by choosing an SHG intensity threshold criteria. This work lays the foundation for developing an SHG-based high-throughput flow sorter for purifying hiPSC-derived cardiomyocytes and their subtypes.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Humanos
10.
Stem Cells ; 38(1): 90-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566285

RESUMO

Genetically encoded fluorescent voltage indicators, such as ArcLight, have been used to report action potentials (APs) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). However, the ArcLight expression, in all cases, relied on a high number of lentiviral vector-mediated random genome integrations (8-12 copy/cell), raising concerns such as gene disruption and alteration of global and local gene expression, as well as loss or silencing of reporter genes after differentiation. Here, we report the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease technique to develop a hiPSC line stably expressing ArcLight from the AAVS1 safe harbor locus. The hiPSC line retained proliferative ability with a growth rate similar to its parental strain. Optical recording with conventional epifluorescence microscopy allowed the detection of APs as early as 21 days postdifferentiation, and could be repeatedly monitored for at least 5 months. Moreover, quantification and analysis of the APs of ArcLight-CMs identified two distinctive subtypes: a group with high frequency of spontaneous APs of small amplitudes that were pacemaker-like CMs and a group with low frequency of automaticity and large amplitudes that resembled the working CMs. Compared with FluoVolt voltage-sensitive dye, although dimmer, the ArcLight reporter exhibited better optical performance in terms of phototoxicity and photostability with comparable sensitivities and signal-to-noise ratios. The hiPSC line with targeted ArcLight engineering design represents a useful tool for studying cardiac development or hiPSC-derived cardiac disease models and drug testing.


Assuntos
Potenciais de Ação/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas , Terapia Genética , Humanos
11.
Stem Cell Res Ther ; 10(1): 203, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286988

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is an autosomal recessive disease caused by a non-coding mutation in the first intron of the frataxin (FXN) gene that suppresses its expression. Compensatory hypertrophic cardiomyopathy, dilated cardiomyopathy, and conduction system abnormalities in FRDA lead to cardiomyocyte (CM) death and fibrosis, consequently resulting in heart failure and arrhythmias. Murine models have been developed to study disease pathology in the past two decades; however, differences between human and mouse physiology and metabolism have limited the relevance of animal studies in cardiac disease conditions. To bridge this gap, we aimed to generate species-specific, functional in vitro experimental models of FRDA using 2-dimensional (2D) and 3-dimensional (3D) engineered cardiac tissues from FXN-deficient human pluripotent stem cell-derived ventricular cardiomyocytes (hPSC-hvCMs) and to compare their contractile and electrophysiological properties with healthy tissue constructs. METHODS: Healthy control and FRDA patient-specific hPSC-hvCMs were derived by directed differentiation using a small molecule-based protocol reported previously. We engineered the hvCMs into our established human ventricular cardiac tissue strip (hvCTS) and human ventricular cardiac anisotropic sheet (hvCAS) models, and functional assays were performed on days 7-17 post-tissue fabrication to assess the electrophysiology and contractility of FRDA patient-derived and FXN-knockdown engineered tissues, in comparison with healthy controls. To further validate the disease model, forced expression of FXN was induced in FXN-deficient tissues to test if disease phenotypes could be rescued. RESULTS: Here, we report for the first time the generation of human engineered tissue models of FRDA cardiomyopathy from hPSCs: FXN-deficient hvCTS displayed attenuated developed forces (by 70-80%) compared to healthy controls. High-resolution optical mapping of hvCAS with reduced FXN expression also revealed electrophysiological defects consistent with clinical observations, including action potential duration prolongation and maximum capture frequency reduction. Interestingly, a clear positive correlation between FXN expression and contractility was observed (ρ > 0.9), and restoration of FXN protein levels by lentiviral transduction rescued contractility defects in FXN-deficient hvCTS. CONCLUSIONS: We conclude that human-based in vitro cardiac tissue models of FRDA provide a translational, disease-relevant biomimetic platform for the evaluation of novel therapeutics and to provide insight into FRDA disease progression.


Assuntos
Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Potenciais de Ação/fisiologia , Cardiomiopatias/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Humanos , Frataxina
12.
Int J Nanomedicine ; 13: 6073-6078, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323594

RESUMO

PURPOSE: The delivery of transgenes into human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) represents an important tool in cardiac regeneration with potential for clinical applications. Gene transfection is more difficult, however, for hiPSCs and hiPSC-CMs than for somatic cells. Despite improvements in transfection and transduction, the efficiency, cytotoxicity, safety, and cost of these methods remain unsatisfactory. The objective of this study is to examine gene transfection in hiPSCs and hiPSC-CMs using magnetic nanoparticles (NPs). METHODS: Magnetic NPs are unique transfection reagents that form complexes with nucleic acids by ionic interaction. The particles, loaded with nucleic acids, can be guided by a magnetic field to allow their concentration onto the surface of the cell membrane. Subsequent uptake of the loaded particles by the cells allows for high efficiency transfection of the cells with nucleic acids. We developed a new method using magnetic NPs to transfect hiPSCs and hiPSC-CMs. HiPSCs and hiPSC-CMs were cultured and analyzed using confocal microscopy, flow cytometry, and patch clamp recordings to quantify the transfection efficiency and cellular function. RESULTS: We compared the transfection efficiency of hiPSCs with that of human embryonic kidney (HEK 293) cells. We observed that the average efficiency in hiPSCs was 43%±2% compared to 62%±4% in HEK 293 cells. Further analysis of the transfected hiPSCs showed that the differentiation of hiPSCs to hiPSC-CMs was not altered by NPs. Finally, robust transfection of hiPSC-CMs with an efficiency of 18%±2% was obtained. CONCLUSION: The difficult-to-transfect hiPSCs and hiPSC-CMs were efficiently transfected using magnetic NPs. Our study offers a novel approach for transfection of hiPSCs and hiPSC-CMs without the need for viral vector generation.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Nanopartículas de Magnetita/química , Transfecção/métodos , Diferenciação Celular , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lipídeos/química , Nanopartículas de Magnetita/ultraestrutura , Miócitos Cardíacos/citologia
13.
PLoS One ; 12(9): e0185125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934329

RESUMO

Extracellular matrix plays a role in differentiation and phenotype development of its resident cells. Although cardiac extracellular matrix from the contractile tissues has been studied and utilized in tissue engineering, extracellular matrix properties of the pacemaking sinoatrial node are largely unknown. In this study, the biomechanical properties and biochemical composition and distribution of extracellular matrix in the sinoatrial node were investigated relative to the left ventricle. Extracellular matrix of the sinoatrial node was found to be overall stiffer than that of the left ventricle and highly heterogeneous with interstitial regions composed of predominantly fibrillar collagens and rich in elastin. The extracellular matrix protein distribution suggests that resident pacemaking cardiomyocytes are enclosed in fibrillar collagens that can withstand greater tensile strength while the surrounding elastin-rich regions may undergo deformation to reduce the mechanical strain in these cells. Moreover, basement membrane-associated adhesion proteins that are ligands for integrins were of low abundance in the sinoatrial node, which may decrease force transduction in the pacemaking cardiomyocytes. In contrast to extracellular matrix of the left ventricle, extracellular matrix of the sinoatrial node may reduce mechanical strain and force transduction in pacemaking cardiomyocytes. These findings provide the criteria for a suitable matrix scaffold for engineering biopacemakers.


Assuntos
Matriz Extracelular/metabolismo , Ventrículos do Coração/metabolismo , Nó Sinoatrial/metabolismo , Animais , Membrana Basal/química , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Relógios Biológicos/fisiologia , Fenômenos Biomecânicos , Colágeno/metabolismo , Colágeno/ultraestrutura , Elasticidade , Elastina/metabolismo , Elastina/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Fibronectinas/metabolismo , Fibronectinas/ultraestrutura , Imunofluorescência , Ventrículos do Coração/química , Ventrículos do Coração/ultraestrutura , Espectrometria de Massas , Microscopia de Força Atômica , Microscopia Eletroquímica de Varredura , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Proteoma , Proteômica , Nó Sinoatrial/química , Nó Sinoatrial/ultraestrutura , Suínos , Resistência à Tração
14.
Stem Cells ; 34(11): 2670-2680, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27434649

RESUMO

Insights into the expression of pacemaker-specific markers in human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte subtypes can facilitate the enrichment and track differentiation and maturation of hiPSC-derived pacemaker-like cardiomyocytes. To date, no study has directly assessed gene expression in each pacemaker-, atria-, and ventricular-like cardiomyocyte subtype derived from hiPSCs since currently the subtypes of these immature cardiomyocytes can only be identified by action potential profiles. Traditional acquisition of action potentials using patch-clamp recordings renders the cells unviable for subsequent analysis. We circumvented these issues by acquiring the action potential profile of a single cell optically followed by assessment of protein expression through immunostaining in that same cell. Our same-single-cell analysis for the first time revealed expression of proposed pacemaker-specific markers-hyperpolarization-activated cyclic nucleotide-modulated (HCN)4 channel and Islet (Isl)1-at the protein level in all three hiPSC-derived cardiomyocyte subtypes. HCN4 expression was found to be higher in pacemaker-like hiPSC-derived cardiomyocytes than atrial- and ventricular-like subtypes but its downregulation over time in all subtypes diminished the differences. Isl1 expression in pacemaker-like hiPSC-derived cardiomyocytes was initially not statistically different than the contractile subtypes but did become statistically higher than ventricular-like cells with time. Our observations suggest that although HCN4 and Isl1 are differentially expressed in hiPSC-derived pacemaker-like relative to ventricular-like cardiomyocytes, these markers alone are insufficient in identifying hiPSC-derived pacemaker-like cardiomyocytes. Stem Cells 2016;34:2670-2680.


Assuntos
Potenciais de Ação/fisiologia , Átrios do Coração/metabolismo , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem da Célula/genética , Eletrofisiologia , Expressão Gênica , Átrios do Coração/citologia , Sistema de Condução Cardíaco/citologia , Ventrículos do Coração/citologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Especificidade de Órgãos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-27162031

RESUMO

BACKGROUND: Atrial fibrillation represents the most common arrhythmia leading to increased morbidity and mortality, yet, current treatment strategies have proven inadequate. Conventional treatment with antiarrhythmic drugs carries a high risk for proarrhythmias. The soluble epoxide hydrolase enzyme catalyzes the hydrolysis of anti-inflammatory epoxy fatty acids, including epoxyeicosatrienoic acids from arachidonic acid to the corresponding proinflammatory diols. Therefore, the goal of the study is to directly test the hypotheses that inhibition of the soluble epoxide hydrolase enzyme can result in an increase in the levels of epoxyeicosatrienoic acids, leading to the attenuation of atrial structural and electric remodeling and the prevention of atrial fibrillation. METHODS AND RESULTS: For the first time, we report findings that inhibition of soluble epoxide hydrolase reduces inflammation, oxidative stress, atrial structural, and electric remodeling. Treatment with soluble epoxide hydrolase inhibitor significantly reduces the activation of key inflammatory signaling molecules, including the transcription factor nuclear factor κ-light-chain-enhancer, mitogen-activated protein kinase, and transforming growth factor-ß. CONCLUSIONS: This study provides insights into the underlying molecular mechanisms leading to atrial fibrillation by inflammation and represents a paradigm shift from conventional antiarrhythmic drugs, which block downstream events to a novel upstream therapeutic target by counteracting the inflammatory processes in atrial fibrillation.


Assuntos
Antiarrítmicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fibrilação Atrial/metabolismo , Remodelamento Atrial/fisiologia , Inibidores Enzimáticos/uso terapêutico , Átrios do Coração/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/efeitos dos fármacos , Modelos Animais de Doenças , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Circ Res ; 118(2): e19-28, 2016 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-26643875

RESUMO

RATIONALE: Cardiac myocyte contraction is caused by Ca(2+) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca(2+) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca(2+) release, such as Ca(2+) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca(2+)-contraction coupling in live cardiac myocytes. OBJECTIVE: To develop a method for imaging sarcomere level Ca(2+)-contraction coupling in healthy and disease model cardiac myocytes. METHODS AND RESULTS: Freshly isolated cardiac myocytes were loaded with the Ca(2+)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca(2+) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca(2+) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca(2+) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca(2+) waves and correlated local contraction in pressure-overload-induced cardiomyopathy. CONCLUSIONS: Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca(2+) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca(2+) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca(2+)-contraction coupling and mechanochemotransduction in both health and disease.


Assuntos
Cardiomiopatias/metabolismo , Acoplamento Excitação-Contração , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Multimodal/métodos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Compostos de Anilina , Animais , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Corantes Fluorescentes , Cinética , Masculino , Mecanotransdução Celular , Camundongos , Ratos Sprague-Dawley , Estresse Mecânico , Xantenos
17.
Heart Rhythm ; 12(8): 1845-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956967

RESUMO

Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Humanos
18.
Sci Rep ; 5: 10751, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26021750

RESUMO

Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.


Assuntos
Citometria de Fluxo/instrumentação , Dispositivos Lab-On-A-Chip , Fenômenos Ópticos , Análise de Célula Única/instrumentação , Luz
19.
Circ Cardiovasc Genet ; 8(3): 427-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25759434

RESUMO

BACKGROUND: Differentiation of pluripotent human embryonic stem cells (hESCs) to the cardiac lineage represents a potentially unlimited source of ventricular cardiomyocytes (VCMs), but hESC-VCMs are developmentally immature. Previous attempts to profile hESC-VCMs primarily relied on transcriptomic approaches, but the global proteome has not been examined. Furthermore, most hESC-CM studies focus on pathways important for cardiac differentiation, rather than regulatory mechanisms for CM maturation. We hypothesized that gene products and pathways crucial for maturation can be identified by comparing the proteomes of hESCs, hESC-derived VCMs, human fetal and human adult ventricular and atrial CMs. METHODS AND RESULTS: Using two-dimensional-differential-in-gel electrophoresis, 121 differentially expressed (>1.5-fold; P<0.05) proteins were detected. The data set implicated a role of the peroxisome proliferator-activated receptor α signaling in cardiac maturation. Consistently, WY-14643, a peroxisome proliferator-activated receptor α agonist, increased fatty oxidative enzyme level, hyperpolarized mitochondrial membrane potential and induced a more organized morphology. Along this line, treatment with the thyroid hormone triiodothyronine increased the dynamic tension developed in engineered human ventricular cardiac microtissue by 3-fold, signifying their maturation. CONCLUSIONS: We conclude that the peroxisome proliferator-activated receptor α and thyroid hormone pathways modulate the metabolism and maturation of hESC-VCMs and their engineered tissue constructs. These results may lead to mechanism-based methods for deriving mature chamber-specific CMs.


Assuntos
Feto/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/metabolismo , Proteômica , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Miocárdio/metabolismo , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Pirimidinas/farmacologia , Tri-Iodotironina/farmacologia
20.
Stem Cells Transl Med ; 3(1): 18-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24324277

RESUMO

The generation of human ventricular cardiomyocytes from human embryonic stem cells and/or induced pluripotent stem cells could fulfill the demand for therapeutic applications and in vitro pharmacological research; however, the production of a homogeneous population of ventricular cardiomyocytes remains a major limitation. By combining small molecules and growth factors, we developed a fully chemically defined, directed differentiation system to generate ventricular-like cardiomyocytes (VCMs) from human embryonic stem cells and induced pluripotent stem cells with high efficiency and reproducibility. Molecular characterization revealed that the differentiation recapitulated the developmental steps of cardiovascular fate specification. Electrophysiological analyses further illustrated the generation of a highly enriched population of VCMs. These chemically induced VCMs exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate chronotropic responses to cardioactive compounds. In addition, using an integrated computational and experimental systems biology approach, we demonstrated that the modulation of the canonical Wnt pathway by the small molecule IWR-1 plays a key role in cardiomyocyte subtype specification. In summary, we developed a reproducible and efficient experimental platform that facilitates a chemical genetics-based interrogation of signaling pathways during cardiogenesis that bypasses the limitations of genetic approaches and provides a valuable source of ventricular cardiomyocytes for pharmacological screenings as well as cell replacement therapies.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Ventrículos do Coração/citologia , Imidas/farmacologia , Miócitos Cardíacos/citologia , Quinolinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Ativinas/farmacologia , Antineoplásicos/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Meios de Cultura/farmacologia , Células-Tronco Embrionárias/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA