Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Fetal Diagn Ther ; : 1-8, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38643759

RESUMO

INTRODUCTION: No evidence-based protocols exist for fetal cardiac monitoring during fetoscopic myelomeningocele (fMMC) repair and intraprocedural spectral Doppler data are limited. We determined the feasibility of continuous fetal echocardiography during fMMC repair and correlated Doppler changes with qualitative fetal cardiac function during each phase of fMMC repair. METHODS: Patients undergoing fMMC repair had continuous fetal echocardiography interpreted in real-time by pediatric cardiology. Fetal data included fetal heart rate (FHR), qualitative cardiac function, mitral and tricuspid valve inflow waveforms, and umbilical artery (UA), umbilical vein (UV), ductus arteriosus (DA), and ductus venosus (DV) Dopplers. RESULTS: UA abnormalities were noted in 14/25 patients, UV abnormalities were observed in 2 patients, and DV and DA abnormalities were each noted in 4 patients. Qualitative cardiac function was normal for all patients with the exception of one with isolated left ventricular dysfunction during myofascial flap creation, concurrent with an abnormal UA flow pattern. All abnormalities resolved by the first postoperative day. CONCLUSIONS: Continuous fetal echocardiography was feasible during all fMMC repairs. Spectral Doppler changes in the UA were common during fMMC procedures but qualitative cardiac dysfunction was rare. Abnormalities in the UV, DV, and DA Dopplers, FHR, and cardiac function were less common findings.

2.
Gene Ther ; 30(3-4): 386-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36258038

RESUMO

Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes. We showed that fetal and neonatal livers are comprised of proliferative hepatocytes with abundant expression of genes involved in homology-directed repair (HDR) of DNA double-strand breaks (DSBs), key for efficient gene editing by CRISPR/Cas9. We demonstrated the same is true of hepatocytes after undergoing a regenerative stimulus (partial hepatectomy), where post-hepatectomy cells show a higher efficiency of HDR and correction. Specifically, we demonstrated that HDR-related genome correction is most effective in the replicative phase, or S-phase, of an actively proliferating cell. In conclusion, this study shows that taking advantage of or triggering cell proliferation, specifically DNA replication in S-phase, may serve as an important tool to improve efficiency of CRISPR/Cas9-mediated genome editing in the liver and provide a curative therapy for IEMs in both children and adults.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Reparo de DNA por Recombinação , Quebras de DNA de Cadeia Dupla , DNA , Reparo do DNA
3.
Perm J ; 26(2): 11-20, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35933663

RESUMO

Introduction This study describes the parental perspective of the management and care experience of patients experiencing a pregnancy complicated by a fetal diagnosis to inform more supportive patient-centered care. Methods We conducted a prospective multicenter qualitative patient experience study at three metropolitan children's hospitals' advanced fetal care centers: the Cincinnati, Colorado, and Midwest Fetal Care Centers. Data were collected from pregnant patients who experienced the management of a pregnancy complicated by a fetal anomaly. Clinical journey data were obtained using qualitative research methods in post-birth semistructured interviews. We assembled a generalizable patient journey map to identify the general clinical encounters, and present common participant experiences from diagnosis to post-birth discharge. Results Fifteen families were interviewed; four experienced a loss (27%). Common experiences of trust, education, surrounding support, consistency, and abandonment emerged across all centers. Participant trust in their care team was gained through strong referrals, institutional reputation, and transparent outcomes. Unconditional care team support and continual reassurance was paramount to maintaining participant trust throughout their care journey. Participants appreciated both active and passive educational techniques at clinical touch points. A consistent point of contact assured participants. All families mentioned they felt close to their fetal care team; however, several mentioned that the post-birth transition of care created feelings of abandonment. Conclusions When a family understands the clinical information and feels supported, they are empowered and confident in their ability to navigate their circumstances. Listening to the parental perspective is important to delivering sensitive fetal care.


Assuntos
Pais , Cuidado Pré-Natal , Criança , Feminino , Humanos , Alta do Paciente , Gravidez , Estudos Prospectivos , Pesquisa Qualitativa
4.
Nat Commun ; 13(1): 5012, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008405

RESUMO

Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach.


Assuntos
Lesões Pré-Cancerosas , Tirosinemias , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Cirrose Hepática/terapia , Nitrobenzoatos/farmacologia , Nitrobenzoatos/uso terapêutico , Suínos , Tirosinemias/genética , Tirosinemias/terapia
5.
J Perinatol ; 42(7): 856-859, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35031691

RESUMO

As the field of fetal intervention grows, novel ethical tensions will arise. We present a case of Fetal myelomeningocele repair involving a 25-week fetus where parents requested that if emergent delivery was necessary during the open uterine procedure, that the medical team did not perform resuscitation. This question brings forward an important discussion around the complicated space of maternal autonomy, child rights, and clinician obligations that exists in fetal intervention. In some regions, a mother in this situation may choose to terminate the pregnancy. Parents could also choose not to do the surgery. Parents in some regions could opt for no resuscitation of a child born at 25-weeks' gestation. We offer an analysis of these relevant considerations, the different tensions, and the conflicting duties between the mother, fetus, and medical team. This analysis will provide ethical and clinical guidance for future questions that may arise in this burgeoning field.


Assuntos
Meningomielocele , Criança , Feminino , Feto/cirurgia , Idade Gestacional , Humanos , Meningomielocele/cirurgia , Pais , Gravidez , Cuidado Pré-Natal
6.
Tissue Eng Part A ; 28(3-4): 150-160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34309416

RESUMO

The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. The expansion properties of human hepatocytes in immunodeficient mice are well known. However, little has been reported about larger animals that are more scalable and practical for clinical purposes. Therefore, we engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. Immunodeficient swine were engineered by knockout of the recombinase-activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. Human albumin was measured as a marker of engraftment. Cytotoxicity against ihHCs was measured in transplanted piglets and control swine. We initially detected higher levels of human albumin in cord blood of newborn FAH/RAG2-deficient (FR) pigs compared with immunocompetent controls (196.26 ng/dL vs. 39.29 ng/dL, p = 0.008), indicating successful engraftment of ihHCs after IUCT and adaptive immunity in the fetus. Although rare hepatocytes staining positive for human albumin were observed, levels of human albumin did not rise after birth, but declined, suggesting rejection of xenografted ihHCs. Cytotoxicity against ihHCs increased after birth by 3.8% (95% CI: [2.1%-5.4%], p < 0.001) and inversely correlated with declining levels of human albumin (p = 2.1 × 10-5, R2 = 0.17). Circulating numbers of T cells and B cells were negligible in FR pigs. However, circulating natural killer (NK) cells exerted cytotoxicity against ihHCs. NK cell activity was lower in immunodeficient piglets after IUCT than in naive controls (30.4% vs. 40.1%, p = 0.011, 95% CI for difference [2.7%-16.7%]). In conclusion, ihHCs were successfully engrafted in FR swine after IUCT. NK cells were a significant barrier to expansion of hepatocytes. New approaches are needed to overcome this hurdle and allow large-scale expansion of human hepatocytes in immunodeficient swine. Impact statement There is currently a need for robust expansion of human hepatocytes. We describe an immunodeficient swine model into which we engrafted immature human hepatocytes (ihHCs). We identified the mechanism of the eventual graft rejection by the intact NK cell population, which has not been previously shown to have a significant role in xenograft rejection. By both improving engraftment and reducing NK cell-mediated cytotoxicity toward the graft through intrauterine cell transfer, we confirmed the presence of residual adaptive immunity in this model of immunodeficiency and the ability to induce hyposensitization in the NK cell population by taking advantage of the fetal microenvironment.


Assuntos
Hepatócitos , Recombinases , Animais , Transplante de Células , Proteínas de Ligação a DNA/genética , Rejeição de Enxerto , Hepatócitos/transplante , Humanos , Camundongos , Proteínas Nucleares , Suínos , Transplante Heterólogo
7.
Fetal Diagn Ther ; 49(3): 117-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34915495

RESUMO

INTRODUCTION: Uterine incision based on the placental location in open maternal-fetal surgery (OMFS) has never been evaluated in regard to maternal or fetal outcomes. OBJECTIVE: The aim of this study was to investigate whether an anterior placenta was associated with increased rates of intraoperative, perioperative, antepartum, obstetric, or neonatal complications in mothers and babies who underwent OMFS for fetal myelomeningocele (fMMC) closure. METHODS: Data from the international multicenter prospective registry of patients who underwent OMFS for fMMC closure (fMMC Consortium Registry, December 15, 2010-June 31, 2019) was used to compare fetal and maternal outcomes between anterior and posterior placental locations. RESULTS: The placental location for 623 patients was evenly distributed between anterior (51%) and posterior (49%) locations. Intraoperative fetal bradycardia (8.3% vs. 3.0%, p = 0.005) and performance of fetal resuscitation (3.6% vs. 1.0%, p = 0.034) occurred more frequently in cases with an anterior placenta when compared to those with a posterior placenta. Obstetric outcomes including membrane separation, placental abruption, and spontaneous rupture of membranes were not different among the 2 groups. However, thinning of the hysterotomy site (27.7% vs. 17.7%, p = 0.008) occurred more frequently in cases of an anterior placenta. Gestational age (GA) at delivery (p = 0.583) and length of stay in the neonatal intensive care unit (p = 0.655) were similar between the 2 groups. Fetal incision dehiscence and wound revision were not significantly different between groups. Critical clinical outcomes including fetal demise, perinatal death, and neonatal death were all infrequent occurrences and not associated with the placental location. CONCLUSIONS: An anterior placental location is associated with increased risk of intraoperative fetal resuscitation and increased thinning at the hysterotomy closure site. Individual institutional experiences may have varied, but the aggregate data from the fMMC Consortium did not show a significant impact on the GA at delivery or maternal or fetal clinical outcomes.


Assuntos
Terapias Fetais , Meningomielocele , Feminino , Terapias Fetais/efeitos adversos , Idade Gestacional , Humanos , Histerotomia/efeitos adversos , Recém-Nascido , Meningomielocele/etiologia , Meningomielocele/cirurgia , Placenta/cirurgia , Gravidez
8.
J Pediatr Surg ; 56(7): 1107-1112, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865604

RESUMO

INTRODUCTION: Prior data suggest that infants with gastroschisis are at high risk for hypothermia and infectious complications (ICs). This study evaluated the associations between perioperative hypothermia (PH) and ICs in gastroschisis using a multi-institutional cohort. METHODS: Retrospective review of infants with gastroschisis who underwent abdominal closure from 2013-2017 was performed at 7 children's hospitals. Any-IC and surgical site infection (SSI) were stratified against the presence or absence of PH, and perioperative characteristics associated with PH and SSI were determined using multivariable logistic regression. RESULTS: Of 256 gastroschisis neonates, 42% developed PH, with 18% classified as mild hypothermia (35.5-35.9 °C), 10.5% as moderate (35.0-35.4 °C), and 13% severe (<35 °C). There were 82 (32%) ICs with 50 (19.5%) being SSIs. No associations between PH and any-IC (p = 0.7) or SSI (p = 0.98) were found. Pulmonary comorbidities (odds ratio (OR)=3.76, 95%CI:1.42-10, p = 0.008) and primary closure (OR=0.21, 95%CI:0.12-0.39, p<0.001) were associated with PH, while silo placement (OR=2.62, 95%CI:1.1-6.3, p = 0.03) and prosthetic patch (OR=3.42, 95%CI:1.4-8.3, p = 0.007) were associated with SSI on multivariable logistic regression. CONCLUSIONS: Primary abdominal closure and pulmonary comorbidities are associated with PH in gastroschisis, however PH was not associated with increased risk of ICs. Independent risk factors for SSI include silo placement and prosthetic patch closure.


Assuntos
Gastrosquise , Hipotermia , Criança , Gastrosquise/complicações , Gastrosquise/epidemiologia , Gastrosquise/cirurgia , Humanos , Hipotermia/epidemiologia , Hipotermia/etiologia , Lactente , Recém-Nascido , Estudos Retrospectivos , Fatores de Risco , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Resultado do Tratamento
9.
J Inherit Metab Dis ; 44(6): 1369-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896013

RESUMO

Phenylketonuria (PKU) is the most common inborn error of metabolism of the liver, and results from mutations of both alleles of the phenylalanine hydroxylase gene (PAH). As such, it is a suitable target for gene therapy via gene delivery with a recombinant adeno-associated virus (AAV) vector. Here we use the synthetic AAV vector Anc80 via systemic administration to deliver a functional copy of a codon-optimized human PAH gene, with or without an intron spacer, to the Pahenu2 mouse model of PKU. Dose-dependent transduction of the liver and expression of PAH mRNA were present with both vectors, resulting in significant and durable reduction of circulating phenylalanine, reaching near control levels in males. Coat color of treated Pahenu2 mice reflected an increase in pigmentation from brown to the black color of control animals, further indicating functional restoration of phenylalanine metabolism and its byproduct melanin. There were no adverse effects associated with administration of AAV up to 5 × 1012 VG/kg, the highest dose tested. Only minor and/or transient variations in some liver enzymes were observed in some of the AAV-dosed animals which were not associated with pathology findings in the liver. Finally, there was no impact on cell turnover or apoptosis as evaluated by Ki-67 and TUNEL staining, further supporting the safety of this approach. This study demonstrates the therapeutic potential of AAV Anc80 to safely and durably cure PKU in a mouse model, supporting development for clinical consideration.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/terapia , Animais , Linhagem Celular , DNA Recombinante/administração & dosagem , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Cor de Cabelo , Humanos , Injeções Intravenosas , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina/sangue , Fenilalanina Hidroxilase/imunologia , Fenilalanina Hidroxilase/metabolismo , Transdução Genética/métodos
10.
PLoS One ; 16(1): e0245831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493163

RESUMO

Phenylketonuria (PKU) is a metabolic disorder whereby phenylalanine metabolism is deficient due to allelic variations in the gene for phenylalanine hydroxylase (PAH). There is no cure for PKU other than orthotopic liver transplantation, and the standard of care for patients is limited to dietary restrictions and key amino acid supplementation. Therefore, Pah was edited in pig fibroblasts for the generation of PKU clone piglets that harbor a common and severe human mutation, R408W. Additionally, the proximal region to the mutation was further humanized by introducing 5 single nucleotide polymorphisms (SNPs) to allow for development of gene editing machinery that could be translated directly from the pig model to human PKU patients that harbor at least one classic R408W allele. Resulting piglets were hypopigmented (a single Ossabaw piglet) and had low birthweight (all piglets). The piglets had similar levels of PAH expression, but no detectable enzymatic activity, consistent with the human phenotype. The piglets were fragile and required extensive neonatal care to prevent failure to thrive and early demise. Phenylalanine levels rose sharply when dietary Phe was unrestricted but could be rapidly reduced with a low Phe diet. Fibroblasts isolated from R408W piglets show susceptibility to correction using CRISPR or TALEN, with subsequent homology-directed recombination to correct Pah. This pig model of PKU provides a powerful new tool for development of all classes of therapeutic candidates to treat or cure PKU, as well as unique value for proof-of-concept studies for in vivo human gene editing platforms in the context of this humanized PKU allele.


Assuntos
Edição de Genes/métodos , Mutação , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Animais , Sequência de Bases , Modelos Animais de Doenças , Humanos , Fenótipo , Segurança , Suínos
11.
Expert Opin Orphan Drugs ; 8(7): 245-256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224636

RESUMO

INTRODUCTION: Inborn errors of metabolism (IEMs) often result from single-gene mutations and collectively cause liver dysfunction in neonates leading to chronic liver and systemic disease. Current treatments for many IEMs are limited to maintenance therapies that may still require orthotropic liver transplantation. Gene therapies offer a potentially superior approach by correcting or replacing defective genes with functional isoforms; however, they face unique challenges from complexities presented by individual diseases and their diverse etiology, presentation, and pathophysiology. Furthermore, immune responses, off-target gene disruption, and tumorigenesis are major concerns that need to be addressed before clinical application of gene therapy. AREAS COVERED: The current treatments for IEMs are reviewed as well as the advances in, and barriers to, gene therapy for IEMs. Attention is then given to ex vivo and in vivo gene therapy approaches for hereditary tyrosinemia type 1 (HT1). Of all IEMs, HT1 is particularly amenable to gene therapy because of a selective growth advantage conferred to corrected cells, thereby lowering the initial transduction threshold for phenotypic relevance. EXPERT OPINION: It is proposed that not only is HT1 a safe indication for gene therapy, its unique characteristics position it to be an ideal IEM to develop for clinical investigation.

12.
Mol Ther Methods Clin Dev ; 18: 738-750, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913881

RESUMO

The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.

13.
Fetal Diagn Ther ; 46(1): 75-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31238308

RESUMO

We present a case of prenatal hydrops secondary to congenital high airway obstruction syndrome (CHAOS) that was treated with fetoscopy-assisted needle decompression. A 22-year-old G3P2 woman presented after a 21-week ultrasound demonstrated CHAOS. The fetus developed hydrops at 25 weeks, characterized by abdominal ascites, pericardial effusion, and scalp edema. Fetal MRI showed complete obstruction of the glottis and subglottic airway, suggestive of laryngeal atresia. At 27 weeks, due to the progression of the hydrops, operative fetoscopy was proposed and performed. Fetal laryngoscopy confirmed fusion of the vocal cords and laryngeal atresia. The atretic segment was a solid cartilaginous block, preventing intubation. Using the fetoscope to stabilize the fetal head and neck, we performed ultrasound-guided percutaneous needle drainage of the cervical trachea through the anterior fetal neck. We removed 17 mL of viscous fluid from the lower trachea, resulting in immediate lung decompression. Two weeks later, ultrasound confirmed hydrops resolution. The patient was delivered and tracheostomy performed at 30 weeks via an ex utero intrapartum treatment (EXIT) procedure after progression of preterm labor. At 27 days of life, the infant was stable on minimal ventilator support. To our knowledge, this is the first successful report of an ultrasound-guided percutaneous tracheal decompression through the anterior neck of a fetus with CHAOS secondary to laryngeal atresia.


Assuntos
Obstrução das Vias Respiratórias/cirurgia , Hidropisia Fetal/diagnóstico por imagem , Doenças da Laringe/cirurgia , Traqueia/diagnóstico por imagem , Obstrução das Vias Respiratórias/complicações , Feminino , Sofrimento Fetal/complicações , Sofrimento Fetal/diagnóstico por imagem , Sofrimento Fetal/cirurgia , Fetoscopia , Humanos , Lactente , Recém-Nascido , Doenças da Laringe/complicações , Pulmão/diagnóstico por imagem , Gravidez , Traqueostomia , Ultrassonografia Pré-Natal
14.
Hepatol Commun ; 3(4): 558-573, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976745

RESUMO

Ex vivo CRISPR/Cas9-mediated gene editing in hepatocytes using homology-directed repair (HDR) is a potential alternative curative therapy to organ transplantation for metabolic liver disease. However, a major limitation of this approach in quiescent adult primary hepatocytes is that nonhomologous end-joining is the predominant DNA repair pathway for double-strand breaks (DSBs). This study explored the hypothesis that ex vivo hepatocyte culture could reprogram hepatocytes to favor HDR after CRISPR/Cas9-mediated DNA DSBs. Quantitative PCR (qPCR), RNA sequencing, and flow cytometry demonstrated that within 24 hours, primary mouse hepatocytes in ex vivo monolayer culture decreased metabolic functions and increased expression of genes related to mitosis progression and HDR. Despite the down-regulation of hepatocyte function genes, hepatocytes cultured for up to 72 hours could robustly engraft in vivo. To assess functionality long-term, primary hepatocytes from a mouse model of hereditary tyrosinemia type 1 bearing a single-point mutation were transduced ex vivo with two adeno-associated viral vectors to deliver the Cas9 nuclease, target guide RNAs, and a 1.2-kb homology template. Adeno-associated viral Cas9 induced robust cutting at the target locus, and, after delivery of the repair template, precise correction of the point mutation occurred by HDR. Edited hepatocytes were transplanted into recipient fumarylacetoacetate hydrolase knockout mice, resulting in engraftment, robust proliferation, and prevention of liver failure. Weight gain and biochemical assessment revealed normalization of metabolic function. Conclusion: The results of this study demonstrate the potential therapeutic effect of ex vivo hepatocyte-directed gene editing after reprogramming to cure metabolic disease in a preclinical model of hereditary tyrosinemia type 1.

15.
Cell Transplant ; 28(1): 79-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30477316

RESUMO

Orthotopic liver transplantation remains the only curative therapy for inborn errors of metabolism. Given the tremendous success for primary immunodeficiencies using ex-vivo gene therapy with lentiviral vectors, there is great interest in developing similar curative therapies for metabolic liver diseases. We have previously generated a pig model of hereditary tyrosinemia type 1 (HT1), an autosomal recessive disorder caused by deficiency of fumarylacetoacetate hydrolase (FAH). Using this model, we have demonstrated curative ex-vivo gene and cell therapy using a lentiviral vector to express FAH in autologous hepatocytes. To further evaluate the long-term clinical outcomes of this therapeutic approach, we continued to monitor one of these pigs over the course of three years. The animal continued to thrive off the protective drug NTBC, gaining weight appropriately, and maintaining sexual fecundity for the course of his life. The animal was euthanized 31 months after transplantation to perform a thorough biochemical and histological analysis. Biochemically, liver enzymes and alpha-fetoprotein levels remained normal and abhorrent metabolites specific to HT1 remained corrected. Liver histology showed no evidence of tumorigenicity and Masson's trichrome staining revealed minimal fibrosis and no evidence of cirrhosis. FAH-immunohistochemistry revealed complete repopulation of the liver by transplanted FAH-positive cells. A complete histopathological report on other organs, including kidney, revealed no abnormalities. This study is the first to demonstrate long-term safety and efficacy of hepatocyte-directed gene therapy in a large animal model. We conclude that hepatocyte-directed ex-vivo gene therapy is a rational choice for further exploration as an alternative therapeutic approach to whole organ transplantation for metabolic liver disease, including HT1.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Hidrolases/metabolismo , Tirosinemias/enzimologia , Tirosinemias/terapia , Animais , Biologia Computacional , Modelos Animais de Doenças , Hidrolases/genética , Masculino , Suínos , Tirosinemias/metabolismo
16.
J Vis Exp ; (141)2018 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-30451238

RESUMO

Gene therapy is an ideal choice to cure many inborn errors of metabolism of the liver. Ex-vivo, lentiviral vectors have been used successfully in the treatment of many hematopoietic diseases in humans, as their use offers stable transgene expression due to the vector's ability to integrate into the host genome. This method demonstrates the application of ex vivo gene therapy of hepatocytes to a large animal model of hereditary tyrosinemia type I. This process consists of 1) isolation of primary hepatocytes from the autologous donor/recipient animal, 2) ex vivo gene delivery via hepatocyte transduction with a lentiviral vector, and 3) autologous transplant of corrected hepatocytes via portal vein injection. Success of the method generally relies upon efficient and sterile removal of the liver resection, careful handling of the excised specimen for isolation of viable hepatocytes sufficient for re-engrafting, high-percentage transduction of the isolated cells, and aseptic surgical procedures throughout to prevent infection. Technical failure at any of these steps will result in low yield of viable transduced hepatocytes for autologous transplant or infection of the donor/recipient animal. The pig model of human type 1 hereditary tyrosinemia (HT-1) chosen for this approach is uniquely amenable to such a method, as even a small percentage of engraftment of corrected cells will lead to repopulation of the liver with healthy cells based on a powerful selective advantage over native-diseased hepatocytes. Although this growth selection will not be true for all indications, this approach is a foundation for expansion into other indications and allows for manipulation of this environment to address additional diseases, both within the liver and beyond, while controlling for exposure to viral vector and opportunity for off-target toxicity and tumorigenicity.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Hepatócitos/transplante , Transplante Autólogo/métodos , Animais , Modelos Animais de Doenças , Suínos
17.
Surgery ; 164(3): 473-481, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884476

RESUMO

BACKGROUND: Autologous hepatocyte transplantation after ex vivo gene therapy is an alternative to liver transplantation for metabolic liver disease. Here we evaluate ex vivo gene therapy followed by transplantation of single-cell or spheroid hepatocytes. METHODS: Pig and mouse hepatocytes were isolated, labeled with zirconium-89 and returned to the liver as single cells or spheroids. Biodistribution was evaluated through positron emission tomography-computed tomography. Fumarylacetoacetate hydrolase-deficient pig hepatocytes were isolated and transduced with a lentiviral vector containing the Fah gene. Animals received portal vein infusion of single-cell or spheroid autologous hepatocytes after ex vivo gene delivery. Portal pressures were measured and ultrasound was used to evaluate for thrombus. Differences in engraftment and expansion of ex vivo corrected single-cell or spheroid hepatocytes were followed through histologic analysis and animals' ability to thrive off 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione. RESULTS: Positron emission tomography-computed tomography imaging showed spheroid hepatocytes with increased heterogeneity in biodistribution as compared with single cells, which spread more uniformly throughout the liver. Animals receiving spheroids experienced higher mean changes in portal pressure than animals receiving single cells (P < .01). Additionally, two animals from the spheroid group developed portal vein thrombi that required systemic anticoagulation. Immunohistochemical analysis of spheroid- and single-cell-transplanted animals showed similar engraftment and expansion rates of fumarylacetoacetate hydrolase-positive hepatocytes in the liver, correlating with similar weight stabilization curves. CONCLUSION: Ex vivo gene correction of autologous hepatocytes in fumarylacetoacetate hydrolase-deficient pigs can be performed using hepatocyte spheroids or single-cell hepatocytes, with spheroids showing a more heterogeneous distribution within the liver and higher risks for portal vein thrombosis and increased portal pressures.


Assuntos
Transplante de Células/métodos , Terapia Genética , Hepatócitos/transplante , Esferoides Celulares/transplante , Tirosinemias/terapia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Suínos , Tirosinemias/diagnóstico por imagem , Tirosinemias/patologia
18.
Hum Gene Ther ; 29(11): 1315-1326, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29764210

RESUMO

Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disorder caused by deficiency of fumarylacetoacetate hydrolase (FAH). It has been previously shown that ex vivo hepatocyte-directed gene therapy using an integrating lentiviral vector to replace the defective Fah gene can cure liver disease in small- and large-animal models of HT1. This study hypothesized that ex vivo hepatocyte-directed gene editing using CRISPR/Cas9 could be used to correct a mouse model of HT1, in which a single point mutation results in loss of FAH function. To achieve high transduction efficiencies of primary hepatocytes, this study utilized a lentiviral vector (LV) to deliver both the Streptococcus pyogenes Cas9 nuclease and target guide RNA (LV-Cas9) and an adeno-associated virus (AAV) vector to deliver a 1.2 kb homology template (AAV-HT). Cells were isolated from Fah-/- mice and cultured in the presence of LV and AAV vectors. Transduction of cells with LV-Cas9 induced significant indels at the target locus, and correction of the point mutation in Fah-/- cells ex vivo using AAV-HT was completely dependent on LV-Cas9. Next, hepatocytes transduced ex vivo by LV-Cas9 and AAV-HT were transplanted into syngeneic Fah-/- mice that had undergone a two-thirds partial hepatectomy or sham hepatectomy. Mice were cycled on/off the protective drug 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) to stimulate expansion of corrected cells. All transplanted mice became weight stable off NTBC. However, a significant improvement was observed in weight stability off NTBC in animals that received partial hepatectomy. After 6 months, mice were euthanized, and thorough biochemical and histological examinations were performed. Biochemical markers of liver injury were significantly improved over non-transplanted controls. Histological examination of mice revealed normal tissue architecture, while immunohistochemistry showed robust repopulation of recipient animals with FAH+ cells. In summary, this is the first report of ex vivo hepatocyte-directed gene repair using CRISPR/Cas9 to demonstrate curative therapy in an animal model of liver disease.


Assuntos
Edição de Genes , Terapia Genética , Hepatócitos/metabolismo , Tirosinemias/genética , Tirosinemias/terapia , Animais , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Vetores Genéticos/metabolismo , Hepatócitos/transplante , Hidrolases/genética , Lentivirus/genética , Falência Hepática/patologia , Falência Hepática/terapia , Camundongos , Tirosinemias/patologia
19.
Am J Pathol ; 187(1): 33-41, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27855279

RESUMO

Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by deficiency in fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway. In this study, we investigated whether fumarylacetoacetate hydrolase deficient (FAH-/-) pigs, a novel large-animal model of HT1, develop fibrosis and cirrhosis characteristic of the human disease. FAH-/- pigs were treated with the protective drug 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3 cyclohexandione (NTBC) at a dose of 1 mg/kg per day initially after birth. After 30 days, they were assigned to one of three groups based on dosing of NTBC. Group 1 received ≥0.2 mg/kg per day, group 2 cycled on/off NTBC (0.05 mg/kg per day × 1 week/0 mg/kg per day × 3 weeks), and group 3 received no NTBC thereafter. Pigs were monitored for features of liver disease. Animals in group 1 continued to have weight gain and biochemical analyses comparable to wild-type pigs. Animals in group 2 had significant cessation of weight gain, abnormal biochemical test results, and various grades of fibrosis and cirrhosis. No evidence of hepatocellular carcinoma was detected. Group 3 animals declined rapidly, with acute liver failure. In conclusion, the FAH-/- pig is a large-animal model of HT1 with clinical characteristics that resemble the human phenotype. Under conditions of low-dose NTBC, FAH-/- pigs developed liver fibrosis and portal hypertension, and thus may serve as a large-animal model of chronic liver disease.


Assuntos
Tirosinemias/patologia , Animais , Doença Crônica , Modelos Animais de Doenças , Técnicas de Imagem por Elasticidade , Feminino , Heptanoatos/metabolismo , Humanos , Hidrolases/deficiência , Hidrolases/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/patologia , Espectroscopia de Ressonância Magnética , Masculino , Redes e Vias Metabólicas , Fenótipo , Pressão na Veia Porta , Sus scrofa , Tirosina/metabolismo , Aumento de Peso
20.
Sci Transl Med ; 8(349): 349ra99, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27464750

RESUMO

We tested the hypothesis that ex vivo hepatocyte gene therapy can correct the metabolic disorder in fumarylacetoacetate hydrolase-deficient (Fah(-/-)) pigs, a large animal model of hereditary tyrosinemia type 1 (HT1). Recipient Fah(-/-) pigs underwent partial liver resection and hepatocyte isolation by collagenase digestion. Hepatocytes were transduced with one or both of the lentiviral vectors expressing the therapeutic Fah and the reporter sodium-iodide symporter (Nis) genes under control of the thyroxine-binding globulin promoter. Pigs received autologous transplants of hepatocytes by portal vein infusion. After transplantation, the protective drug 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione (NTBC) was withheld from recipient pigs to provide a selective advantage for expansion of corrected FAH(+) cells. Proliferation of transplanted cells, assessed by both immunohistochemistry and noninvasive positron emission tomography imaging of NIS-labeled cells, demonstrated near-complete liver repopulation by gene-corrected cells. Tyrosine and succinylacetone levels improved to within normal range, demonstrating complete correction of tyrosine metabolism. In addition, repopulation of the Fah(-/-) liver with transplanted cells inhibited the onset of severe fibrosis, a characteristic of nontransplanted Fah(-/-) pigs. This study demonstrates correction of disease in a pig model of metabolic liver disease by ex vivo gene therapy. To date, ex vivo gene therapy has only been successful in small animal models. We conclude that further exploration of ex vivo hepatocyte genetic correction is warranted for clinical use.


Assuntos
Terapia Genética/métodos , Fígado/metabolismo , Tirosinemias/metabolismo , Tirosinemias/terapia , Animais , Cicloexanonas/farmacologia , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Imuno-Histoquímica , Nitrobenzoatos/farmacologia , Suínos , Transplante Homólogo , Tirosinemias/enzimologia , Tirosinemias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA