Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 129, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150592

RESUMO

In this study, arrays of µLEDs in four different sizes (5 × 5 µm2, 10 × 10 µm2, 25 × 25 µm2, 50 × 50 µm2) were fabricated using a flip-chip bonding process. Two passivation processes were investigated with one involving a single layer of SiO2 deposited using plasma-enhanced chemical vapor deposition (PECVD) and the other incorporating Al2O3 deposited by atomic layer deposition (ALD) beneath the SiO2 layer. Owing to superior coverage and protection, the double-layers passivation process resulted in a three-order lower leakage current of µLEDs in the 5 µm chip-sized µLED arrays. Furthermore, higher light output power of µLEDs was observed in each chip-sized µLED array with double layers passivation. Particularly, the highest EQE value 21.9% of µLEDs array with 5 µm × 5 µm chip size was achieved with the double-layers passivation. The EQE value of µLEDs array was improved by 4.4 times by introducing the double-layers passivation as compared with that of µLEDs array with single layer passivation. Finally, more uniform light emission patterns were observed in the µLEDs with 5 µm × 5 µm chip size fabricated by double-layer passivation process using ImageJ software.

2.
Discov Nano ; 18(1): 48, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37382729

RESUMO

Generally, the inductively coupled plasma-reactive ion etching (ICP-RIE) mesa technology was used to remove p-GaN/MQWs and expose n-GaN for electrical contact in a fabricated micro light-emitting diode (µLED). In this process, the exposed sidewalls were significantly damaged which result in small-sized µLED presenting a strong size-dependent influence. Lower emission intensity was observed in the µLED chip, which can be attributed to the effect of sidewall defect during etch processing. To reduce the non-radiative recombination, the ion implantation using an As+ source to substitute the ICP-RIE mesa process was introduced in this study. The ion implantation technology was used to isolate each chip to achieve the mesa process in the µLED fabrication. Finally, the As+ implant energy was optimized at 40 keV, which exhibited excellent current-voltage characteristics, including low forward voltage (3.2 V @1 mA) and low leakage current (10-9 A@- 5 V) of InGaN blue µLEDs. The gradual multi-energy implantation process from 10 to 40 keV can further improve the electrical properties (3.1 V @1 mA) of µLEDs, and the leakage current was also maintained at 10-9 A@- 5 V.

3.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759804

RESUMO

Ultraviolet A light (UV-A, 320-400 nm), which is unblockable by sunscreen, requires careful detection for disease avoidance. In this study, we propose a novel photosensing device capable of detecting UV-A. Cancer-causing UV light can be simultaneously monitored with tiny rapid response sensors for a high carrier transition speed. In our research, a multifunctional ZnO/ZnS nanomaterial hybrid-sprinkled carbon nanotube (CNT) was created for the purpose of fabricating a multipurpose, semiconductorbased application. For our research, ZnO nanorods (NRs) were grown by using a facile hydrothermal method on SiO2 substrate, then vulcanized to form ZnO/ZnS coreshell nanorods, which were sprinkled with carbon nanotubes (CNTs). Results indicate that SiO2/ZnO/ZnS/CNT structures exhibited a stronger conducting current with and without light than those samples without CNTs. Multiple material characterizations of the nanostructures, including of atomic force microscopy (AFM) surface morphology evaluation, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicate that CNTs could be successfully spread on top of the ZnO/ZnS coreshell structures. Furthermore, chemical binding properties, material crystallinity, and optical properties were examined by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and photoluminescence (PL). Owing to their compact size, simple fabrication, and low cost, ZnO/ZnS coreshell NRs/CNT/SiO2-based nanocomposites are promising for future industrial optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA