Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 701
Filtrar
1.
Food Chem X ; 22: 101418, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38736980

RESUMO

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

2.
J Inflamm Res ; 17: 3159-3171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774448

RESUMO

Background: Sepsis is a life-threatening clinical syndrome caused by dysregulated host response to infection. The mechanism underlying sepsis-induced immune dysfunction remains poorly understood. Natural killer T (NKT) cells are cytotoxic lymphocytes that bridge the innate and adaptive immune systems, the role of NKT cells in sepsis is not entirely understood, and NKT cell cluster differences in sepsis remain unexplored. Methods: Mendelian randomization (MR) analyses were first conducted to investigate the causal relationship between side scatter area (SSC-A) on NKT cells and 28-day mortality of septic patients. A prospective and observational study was conducted to validate the relationship between the percentage of NKT cells and 28-day mortality of sepsis. Then, the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from healthy controls and septic patients were profiled. Results: MR analyses first revealed the protective roles of NKT cells in the 28-day mortality of sepsis. Then, 115 septic patients were enrolled. NKT percentage was significantly higher in survivors (n = 84) compared to non-survivors (n = 31) (%, 5.00 ± 3.46 vs 2.18 ± 1.93, P < 0.0001). Patients with lower levels of NKT cells exhibited a significantly increased risk of 28-day mortality. According to scRNA-seq analysis, NKT cell clusters exhibited multiple distinctive characteristics, including a distinguishing cluster defined as FOS+NKT cells, which showed a significant decrease in sepsis. Pseudo-time analysis showed that FOS+NKT cells were characterized by upregulated expression of crucial functional genes such as GZMA and CCL4. CellChat revealed that interactions between FOS+NKT cells and adaptive immune cells including B cells and T cells were decreased in sepsis compared to healthy controls. Conclusion: Our findings indicate that NKT cells may protect against sepsis, and their percentage can predict 28-day mortality. Additionally, we discovered a unique FOS+NKT subtype crucial in sepsis immune response, offering novel insights into its immunopathogenesis.

3.
ACS Biomater Sci Eng ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711418

RESUMO

Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device. Importantly, the cell-laden microgels can be rapidly prepared in a pump-free manner under an all-aqueous environment. The three-dimensional cultured green fluorescent protein-human A549 cells in alginate microgels exhibited enhanced stemness and drug resistance compared to those under two-dimensional conditions. The pancreatic cancer organoids in alginate microgels exhibited some of the key features of pancreatic cancer. The proposed microgels showed decent monodispersity, biocompatibility, and versatility, providing great opportunities in various biomedical applications such as microcarrier fabricating, organoid engineering, and high-throughput drug screening.

4.
iScience ; 27(5): 109732, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706862

RESUMO

In Drosophila, long noncoding RNA Hsrω rapidly assembles membraneless organelle omega speckles under heat shock with unknown biological function. Here, we identified the distribution of omega speckles in multiple tissues of adult Drosophila melanogaster and found that they were selectively distributed in differentiated enterocytes but not in the intestinal stem cells of the midgut. We mimicked the high expression level of Hsrω via overexpression or intense heat shock and demonstrated that the assembly of omega speckles nucleates TBPH for the induction of ISC differentiation. Additionally, we found that heat shock stress promoted cell differentiation, which is conserved in mammalian cells through paraspeckles, resulting in large puncta of TDP-43 (a homolog of TBPH) with less mobility and the differentiation of human induced pluripotent stem cells. Overall, our findings confirm the role of Hsrω and omega speckles in the development of intestinal cells and provide new prospects for the establishment of stem cell differentiation strategies.

5.
Langmuir ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760325

RESUMO

Improving the dispersibility and compatibility of nanomaterials in water-borne epoxy resins is an important means to improve the protection ability and corrosion resistance of coatings. In this study, glycine-functionalized Ti3C2Tx (GT) was used to prepare an epoxy composite coating. The results of Fourier transform infrared spectroscopy and X-ray diffraction showed that glycine was successfully modified. The scanning electron microscopy and transmission electron microscopy results showed that the aggregation of Ti3C2Tx was alleviated. Electrochemical impedance spectroscopy test results show that, after 60 days of immersion, GT coating still shows the best protection performance, and the composite coating |Z|f = 0.01 Hz is 3 orders of magnitude higher than that of the pure epoxy coating. This is mainly because, after adding glycine, the -COOH group on the surface of glycine binds to the -OH group on the surface of Ti3C2Tx, improving the aggregation of Ti3C2Tx itself. At the same time, the -NH group of glycine can also participate in the curing reaction of epoxy resin to strengthen the bonding strength between the coating and the metal. The good dispersion of GT in epoxy resin makes it fill the pores and holes left by epoxy resin curing and strengthen the corrosion resistance. The easy availability and green properties of glycine provide a simple and environmentally friendly method for the modification of Ti3C2Tx.

6.
Adv Mater ; : e2403820, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720475

RESUMO

Graphene's wetting transparency offers promising avenues for creating multifunctional devices by allowing real-time wettability control on liquid substrates via the flow of different liquids beneath graphene. Despite its potential, direct measurement of floating graphene's wettability remains a challenge, hindering the exploration of these applications. The current study develops an experimental methodology to assess the wetting transparency of single-layer graphene (SLG) on liquid substrates. By employing contact angle measurements and Neumann's Triangle model, the challenge of evaluating the wettability of floating free-suspended single-layer graphene is addressed. The research reveals that for successful contact angle measurements, the testing and substrate liquids must be immiscible. Using diiodomethane as the testing liquid and ammonium persulfate solution as liquid substrate, the study demonstrates the near-complete wetting transparency of graphene. Furthermore, it successfully showcases the feasibility of real-time wettability control using graphene on liquid substrates. This work not only advances the understanding of graphene's interaction with liquid interfaces but also suggests a new avenue for the development of multifunctional materials and devices by exploiting the unique wetting transparency of graphene.

7.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38629609

RESUMO

This paper explores the unintentional contamination of Surface-Enhanced Raman Scattering (SERS) substrates by ambient hydrocarbon contaminants and their contribution to SERS spectra. Previous studies have identified amorphous carbon as a potential complicating factor in data analysis in SERS experiments, although its origin has been elusive. Our work showed that ambient hydrocarbon contamination and its decomposition products can be detected by SERS on a gold substrate. We propose that ambient air itself is a source of amorphous carbon contamination on SERS substrates. This understanding is crucial for the correct interpretation of SERS data and highlights the need for careful consideration of potential environmental contaminants in SERS analysis.

8.
BMC Cancer ; 24(1): 453, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605291

RESUMO

BACKGROUND: Evidence from observational studies suggests an association between chronic obstructive pulmonary disease (COPD) and lung cancer. The potential interactions between the immune system and the lungs may play a causative role in COPD and lung cancer and offer therapeutic prospects. However, the causal association and the immune-mediated mechanisms between COPD and lung cancer remain to be determined. METHODS: We employed a two-sample Mendelian randomization (MR) approach to investigate the causal association between COPD and lung cancer. Additionally, we examined whether immune cell signals were causally related to lung cancer, as well as whether COPD was causally associated with immune cell signals. Furthermore, through two-step Mendelian randomization, we investigated the mediating effects of immune cell signals in the causal association between COPD and lung cancer. Leveraging publicly available genetic data, our analysis included 468,475 individuals of European ancestry with COPD, 492,803 individuals of European ancestry with lung cancer, and 731 immune cell signatures of European ancestry. Additionally, we conducted single-cell transcriptome sequencing analysis on COPD, lung cancer, and control samples to validate our findings. FINDINGS: We found a causal association between COPD and lung cancer (odds ratio [OR] = 1.63, 95% confidence interval [CI] = 1.31-2.02, P-value < 0.001). We also observed a causal association between COPD and regulatory T cells (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.01-1.40, P-value < 0.05), as well as a causal association between regulatory T cells and lung cancer (odds ratio [OR] = 1.02, 95% confidence interval [CI] = 1.002-1.045, P-value < 0.05). Furthermore, our two-step Mendelian randomization analysis demonstrated that COPD is associated with lung cancer through the mediation of regulatory T cells. These findings were further validated through single-cell sequencing analysis, confirming the mediating role of regulatory T cells in the association between COPD and lung cancer. INTERPRETATION: As far as we are aware, we are the first to combine single-celled immune cell data with two-sample Mendelian randomization. Our analysis indicates a causal association between COPD and lung cancer, with regulatory T cells playing an intermediary role.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Neoplasias Pulmonares/genética , Análise da Randomização Mendeliana , Análise da Expressão Gênica de Célula Única , Linfócitos T Reguladores , Doença Pulmonar Obstrutiva Crônica/genética , Estudo de Associação Genômica Ampla
9.
Transl Oncol ; 44: 101948, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582059

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically heterogeneous disease with poor clinical outcomes. Identification of biomarkers linked to DNA replication stress may enable improved prognostic risk stratification and guide therapeutic decision making. We performed integrated single-cell RNA sequencing and computational analyses to define the molecular determinants and subtypes underlying ESCC heterogeneity. METHODS: Single-cell RNA sequencing was performed on ESCC samples and analyzed using Seurat. Differential gene expression analysis was used to identify esophageal cell phenotypes. DNA replication stress-related genes were intersected with single-cell differential expression data to identify potential prognostic genes, which were used to generate a DNA replication stress (DRS) score. This score and associated genes were evaluated in survival analysis. Putative prognostic biomarkers were evaluated by Cox regression and consensus clustering. Mendelian randomization analyses assessed the causal role of PRKCB. RESULTS: High DRS score associated with poor survival. Four genes (CDKN2A, NUP155, PPP2R2A, PRKCB) displayed prognostic utility. Three molecular subtypes were identified with discrete survival and immune properties. A 12-gene signature displayed robust prognostic performance. PRKCB was overexpressed in ESCC, while PRKCB knockdown reduced ESCC cell migration. CONCLUSIONS: This integrated single-cell sequencing analysis provides new insights into the molecular heterogeneity and prognostic determinants underlying ESCC. The findings identify potential prognostic biomarkers and a gene expression signature that may enable improved patient risk stratification in ESCC. Experimental validation of the role of PRKCB substantiates the potential clinical utility of our results.

10.
Materials (Basel) ; 17(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673206

RESUMO

The deteriorated plasticity arising from the insoluble precipitates may lead to cracks during the rolling of FeCrAl alloys. The microstructure evolution and hot deformation behavior of an FeCrAl alloy were investigated in the temperature range of 750-1200 °C and strain rate range of 0.01-10 s-1. The flow stress of the FeCrAl alloy decreased with an increasing deformation temperature and decreased strain rate during hot working. The thermal deformation activation energy was determined to be 329.49 kJ/mol based on the compression test. Then, the optimal hot working range was given based on the established hot processing maps. The hot processing map revealed four small instability zones. The optimal working range for the material was identified as follows: at a true strain of 0.69, the deformation temperature should be 1050-1200 °C, and the strain rate should be 0.01-0.4 s-1. The observation of key samples of thermally simulated compression showed that discontinuous dynamic recrystallization started to occur with the temperate above 1000 °C, leading to bended grain boundaries. When the temperature was increased to 1150 °C, the dynamic recrystallization resulted in a microstructure composed of fine and equiaxed grains.

11.
Exp Ther Med ; 27(6): 244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38655039

RESUMO

This study evaluated the immediate and 1-year postoperative outcomes of 14 patients with ruptured Valsalva aneurysmal sinus (RSVA) using symmetric ventricular septal defect (VSD) occluder for transcatheter closure (TCC). The sites of rupture were from the non-coronary sinus to the right atrium (RA) in 10 cases (71.4%), the right coronary sinus (RCS) to the RA in 3 cases (21.4%) and the RCS to the right ventricle in 1 case (7.2%). The defects (5-11 mm) were closed with a symmetrical VSD device. During the follow-up (12 months), the enlarged heart of the patients had significantly shrunk and the NYHA improved after closure. In 1 case, a moderate residual shunt was present and the patient suffered from hemolysis at 2 h after the operation, and 1 patient was transferred to surgery for aortic regurgitation 1 year after the initial treatment of RSVA. In conclusion, the TCC of RSVA with the China made symmetrical VSD occluder is safe and effective.

12.
Langmuir ; 40(12): 6445-6452, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483123

RESUMO

The water wettability of hexagonal boron nitride (hBN) has attracted a lot of research interest in the past 15 years. Experimentally, the static water contact angle (WCA) has been widely utilized to characterize the intrinsic water wettability of hBN. In the current study, we have investigated the effect of airborne hydrocarbons and defects on both static and dynamic WCAs of hBN. Our results showed that the static WCA is impacted by defects, which suggests that previously reported static WCAs do not characterize the intrinsic water wettability of hBN since the state-of-the-art hBN samples always have relatively high defect density. Instead, we found that the advancing WCA of freshly exfoliated hBN is not affected by the defects and airborne hydrocarbons. As a result, the advancing WCA on freshly exfoliated hBN, determined to be 79 ± 3°, best represents the intrinsic water wettability of hBN. A qualitative model has been proposed to describe the effect of airborne hydrocarbons and defects on the static and dynamic WCA of hBN, which is well supported by the experimental results. The finding here has important implications for the water wettability of 2D materials.

13.
Transl Psychiatry ; 14(1): 134, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443348

RESUMO

Suicidal behavior and non-suicidal self-injury (NSSI) are common in adolescent patients with major depressive disorder (MDD). Thus, delineating the unique characteristics of suicide attempters having adolescent MDD with NSSI is important for suicide prediction in the clinical setting. Here, we performed psychological and biochemical assessments of 130 youths having MDD with NSSI. Participants were divided into two groups according to the presence/absence of suicide attempts (SAs). Our results demonstrated that the age of suicide attempters is lower than that of non-attempters in participants having adolescent MDD with NSSI; suicide attempters had higher Barratt Impulsiveness Scale (BIS-11) impulsivity scores and lower serum CRP and cortisol levels than those having MDD with NSSI alone, suggesting levels of cortisol and CRP were inversely correlated with SAs in patients with adolescent MDD with NSSI. Furthermore, multivariate regression analysis revealed that NSSI frequency in the last month and CRP levels were suicidal ideation predictors in adolescent MDD with NSSI, which may indicate that the increased frequency of NSSI behavior is a potential risk factor for suicide. Additionally, we explored the correlation between psychological and blood biochemical indicators to distinguish suicide attempters among participants having adolescent MDD with NSSI and identified a unique correlation network that could serve as a marker for suicide attempters. Our research data further suggested a complex correlation between the psychological and behavioral indicators of impulsivity and anger. Therefore, our study findings may provide clues to identify good clinical warning signs for SA in patients with adolescent MDD with NSSI.


Assuntos
Transtorno Depressivo Maior , Comportamento Autodestrutivo , Adolescente , Humanos , Tentativa de Suicídio , Hidrocortisona , Ira
14.
Virol Sin ; 39(2): 228-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461965

RESUMO

Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 â€‹cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4-10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%-35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.


Assuntos
Culex , Mosquitos Vetores , RNA Viral , Replicação Viral , Animais , Culex/virologia , Mosquitos Vetores/virologia , RNA Viral/genética , Feminino , Linhagem Celular , Flavivirus/genética , Flavivirus/fisiologia , Flavivirus/isolamento & purificação , Cinética , Carga Viral , Genoma Viral , Glândulas Salivares/virologia
15.
J Cancer ; 15(8): 2110-2122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495508

RESUMO

Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.

16.
Opt Express ; 32(5): 7171-7184, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439405

RESUMO

We propose an efficient method for calculating the electromagnetic field of a large-scale array of optical nanoresonators based on the coupling theory of quasinormal mode (QNM). In this method, two approaches of the scattered-field reconstruction and stationary-phase-principle calculated plane-wave expansion are developed to obtain the regularized QNM (RQNM) in different regions. This accurate and efficient calculation of RQNM resolves the far-field divergence issue of QNMs in the QNM-coupling theory, thus enabling a rapid computation of the electromagnetic field of a large-scale array of optical nanoresonators, which is a challenging task for full-wave numerical methods. Using this method, we consider the numerical example of the radiation problem of a single point source in a large-scale periodic array of optical nanoantennas. In comparison to full-wave numerical methods, this method significantly reduces the computation time by 1∼2 orders of magnitude while maintaining accuracy. The high computational efficiency and physical intuitiveness of the method enables to clarify the impact of array size (exceeding 50 × 50 wavelengths), period and field-coupling range (far beyond the tight-binding approximation) on the optical response. The proposed method and results can provide an efficient tool and guidance for the design of large-scale arrays of optical nanoresonators.

17.
Huan Jing Ke Xue ; 45(2): 1141-1149, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471951

RESUMO

This research aimed to clarify the mitigative effect of exogenously applied rare earth element cerium (Ce) on the growth, zinc (Zn) accumulation, and physiological characteristics of wheat (Triticum aestivum L.) seedlings under Zn stress. The wheat variety studied was Bainong307 (BN307), and Zn stress was achieved by growing seedlings in a hydroponic culture experiment with 500 µmol·L-1 Zn2 + added to the culture solution. It was found that Zn stress at 500 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Zn stress. The Zn stress also increased MDA accumulation and the degree of cell membrane lipid peroxidation and reduced soluble protein contents and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). On the contrary, exogenous Ce decreased the adsorption and transport of Zn by the root system and alleviated the damage of Zn stress to wheat seedlings. Specifically, the increase in chlorophyll content (chlorophyll a, chlorophyll b, and total chlorophyll) and photosynthetic parameters, the enhancement of antioxidant enzymes activities and soluble protein levels, and the reduction in MDA content and the damage of lipid peroxidation to the cell membrane were all driven by exogenous Ce, which ultimately led to the increase in dry matter biomass of the root system and shoot. In summary, these results provide basic data for the application of exogenous Ce to alleviate Zn toxicity to plants.


Assuntos
Cério , Zinco , Zinco/metabolismo , Antioxidantes/metabolismo , Plântula , Triticum , Cério/metabolismo , Cério/farmacologia , Clorofila A , Superóxido Dismutase/metabolismo , Clorofila , Estresse Oxidativo
18.
Huan Jing Ke Xue ; 45(2): 1128-1140, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471950

RESUMO

To explore the effects of different concentrations of zinc (Zn) on the growth and root architecture classification of maize seedlings under cadmium (Cd) stress, a hydroponic experiment was conducted to study the effects of different concentrations of Zn (0, 10, 25, 50, 100, 200, and 400 µmol·L-1) on the growth, root architecture and classification characteristics, Cd content, root Cd uptake capacity, and photosynthetic system of maize seedlings under Cd stress (50 µmol·L-1) by using Zhengdan 958 as the experimental material. Principal component analysis and the membership function method were used for comprehensive evaluation. The results showed that the 50 µmol·L-1 Cd stress had a significant toxic effect on maize seedlings, which significantly reduced chlorophyll content and photosynthetic parameters. The main root length, plant height, biomass, root forks, and root tips, including the root length and root surface area of the grade Ⅰ-Ⅲ diameter range and the root volume of the grade Ⅰ-Ⅱ diameter range, decreased significantly, which hindered the normal growth and development of maize seedlings. Compared with that under no Zn application, 100 µmol·L-1 and 200 µmol·L-1 Zn application reduced the uptake of Cd by maize seedlings, significantly reduced the Cd content in shoots and roots and the Cd uptake efficiency. The toxic effect on maize seedlings was alleviated, and the fresh weight, dry weight, tolerance index, and root forks of shoots and roots were significantly increased. The photosynthesis of maize seedlings was significantly enhanced, and the photosynthetic rate and the total chlorophyll content was significantly increased. The RL, SA, and RV in the Ⅰ-Ⅱ diameter range reached the maximum at 100 µmol·L-1 Zn, and the RL, SA, and RV in the Ⅲ diameter range reached the maximum at 200 µmol·L-1 Zn, which were significantly higher than those without Zn treatment. The comprehensive evaluation of the growth tolerance of maize seedlings showed that 100 µmol·L-1 and 200 µmol·L-1 Zn had better effects on alleviating Cd toxicity. Comprehensive analysis showed that the application of appropriate concentration of Zn could reduce the Cd content in maize seedlings, the Cd uptake capacity, and Cd uptake efficiency of roots; increase the biomass accumulation of maize seedlings; reduce the effect of Cd toxicity on root architecture; reduce the effect on the light and system; and improve the tolerance of maize seedlings to Cd.


Assuntos
Plântula , Poluentes do Solo , Zinco , Cádmio , Zea mays , Raízes de Plantas , Clorofila
19.
Environ Toxicol ; 39(5): 3172-3187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348599

RESUMO

OBJECTIVE: Scutellaria baicalensis (SB) and Polygonatum Rhizoma (PR), two traditional Chinese medicines, are both known to suppress cancer. However, the mechanism and effect of combined treatment of them for lung cancer are rarely known. Investigating the combined effect of SB and PR (hereafter referred to as SP) in potential mechanism of lung cancer is required. This study was to evaluate the inhibitory effects of SP on A549 cell growth and to explore the underlying molecular mechanisms. METHODS: According to the theory of Chinese medicine and network pharmacology, in the in vivo experiment, a mouse model of carcinoma in situ was constructed, and lung carcinoma in situ tissues were collected for proteomics analysis, hematoxylin-eosin staining, and CK19 immunohistochemistry. In the in vitro experiment, lung cancer A549 cells at logarithmic growth stage were taken, and the inhibitory effect of SP on the proliferation of A549 cells was detected by CCK8 method. The expression of PON3 was detected by quantitative polymerase chain reaction and western blot. In addition, the effect of SP on the induction of apoptosis in A549 cells and the changes of membrane potential and reactive oxygen species (ROS) content were detected by flow cytometry. The changes of PON3 content in endoplasmic reticulum (ER) are observed by laser confocal microscopy, whereas the effects of SP on the expression of apoptosis-related proteins and ER stress-related proteins in A549 cells were examined by western blot. RESULT: By searching the Traditional Chinese Medicines of Systems Pharmacology (TCMSP) (https://www.tcmspe.com/index.php) database and SymMap database, the respective target genes of PR and SB were mapped into protein network interactions, and using Venn diagrams to show 38 genes in common between PR and SB and lung cancer, SP was found to play a role in the treatment of lung cancer. In vivo experiments showed that in a lung carcinoma in situ model, lung tumor tissue was significantly lower in the SP group compared with the control group, and PON3 was shown to be downregulated by lung tissue proteomics analysis. The combination of SP was able to inhibit the proliferation of A549 cells in a concentration-dependent manner (p < .0001). The expression levels of apoptosis-related proteins and ER stress proteins were significantly increased and the expression levels of PON3 and anti-apoptosis-related proteins were decreased in A549 cells. At the same time, knockdown of PON3 could inhibit tumor cell proliferation (p < .0001). The combination of different concentrations of SP significantly induced apoptosis in A549 cells (p < .05; p < .0001), increased ROS content (p < .01), and damaged mitochondrial membrane potential of A549 cells (p < .05; p < .0001), and significantly increased the expression levels of apoptosis-related proteins and ER stress proteins in lung cancer A549 cells. CONCLUSION: SP inhibits proliferation of lung cancer A549 cells by downregulating PON3-induced apoptosis in the mitochondrial and ER pathways.


Assuntos
Carcinoma in Situ , Neoplasias Pulmonares , Polygonatum , Animais , Camundongos , Humanos , Células A549 , Polygonatum/metabolismo , Scutellaria baicalensis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Neoplasias Pulmonares/patologia , Apoptose , Proliferação de Células , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Linhagem Celular Tumoral
20.
Environ Sci Pollut Res Int ; 31(14): 21646-21658, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396179

RESUMO

Increasing soil cadmium (Cd) contamination is a serious threat to human food health and safety. In order to reduce Cd uptake and Cd toxicity in silage maize, hydroponic tests were conducted to investigate the effect of exogenous Cd on the toxicity of silage maize in this study. In the study, a combination of Cd (5, 20, 50, 80, and 10 µM) treatments was applied in a hydroponic system. With increasing Cd concentration, Cd significantly inhibited the total root length (RL), root surface area (SA), root volume (RV), root tip number (RT), and branching number (RF) of maize seedlings, which were reduced by 28.1 to 71.3%, 20.2 to 64.9%, 11.2 to 56.5%, 43.7 to 63.4%, and 38.2 to 72.6%, respectively. The excessive Cd accumulation inhibited biomass accumulation and reduced silage maize growth, photosynthesis, and chlorophyll content and activated the antioxidant systems, including increasing lipid peroxidation and stimulating catalase (CAT) and peroxidase (POD), but reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the root. Besides, selenium (Se) significantly decreased the Cd concentration of the shoot and root by 27.1% and 35.1% under Cd50, respectively. Our results reveal that exogenously applied Cd reduced silage maize growth and impaired photosynthesis. Whereas silage maize can tolerate Cd by increasing the concentration of ascorbate and glutathione and activating the antioxidant defense system, the application of exogenous selenium significantly reduced the content of Cd in silage maize.


Assuntos
Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Zea mays , Antioxidantes , Silagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA