Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Metab ; 36(4): 793-807.e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378001

RESUMO

Aging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits. IgG activates macrophages via Ras signaling and consequently induces fibrosis in WAT through the TGF-ß/SMAD pathway. Consistently, B cell null mice are protected from aging-associated WAT fibrosis, inflammation, and insulin resistance, unless exposed to IgG. Conditional ablation of the IgG recycling receptor, neonatal Fc receptor (FcRn), in macrophages prevents IgG accumulation in aging, resulting in prolonged healthspan and lifespan. Further, targeting FcRn by antisense oligonucleotide restores WAT integrity and metabolic health in aged mice. These findings pinpoint IgG as a hidden culprit in aging and enlighten a novel strategy to rejuvenate metabolic health.


Assuntos
Tecido Adiposo , Envelhecimento , Camundongos , Animais , Envelhecimento/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Knockout , Fibrose , Imunoglobulina G
2.
Elife ; 102021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155972

RESUMO

Background: Marrow adipose tissue (MAT) has been shown to be vital for regulating metabolism and maintaining skeletal homeostasis in the bone marrow (BM) niche. As a reflection of BM remodeling, MAT is highly responsive to nutrient fluctuations, hormonal changes, and metabolic disturbances such as obesity and diabetes mellitus. Expansion of MAT has also been strongly associated with bone loss in mice and humans. However, the regulation of BM plasticity remains poorly understood, as does the mechanism that links changes in marrow adiposity with bone remodeling. Methods: We studied deletion of Adipsin, and its downstream effector, C3, in C57BL/6 mice as well as the bone-protected PPARγ constitutive deacetylation 2KR mice to assess BM plasticity. The mice were challenged with thiazolidinedione treatment, calorie restriction, or aging to induce bone loss and MAT expansion. Analysis of bone mineral density and marrow adiposity was performed using a µCT scanner and by RNA analysis to assess adipocyte and osteoblast markers. For in vitro studies, primary bone marrow stromal cells were isolated and subjected to osteoblastogenic or adipogenic differentiation or chemical treatment followed by morphological and molecular analyses. Clinical data was obtained from samples of a previous clinical trial of fasting and high-calorie diet in healthy human volunteers. Results: We show that Adipsin is the most upregulated adipokine during MAT expansion in mice and humans in a PPARγ acetylation-dependent manner. Genetic ablation of Adipsin in mice specifically inhibited MAT expansion but not peripheral adipose depots, and improved bone mass during calorie restriction, thiazolidinedione treatment, and aging. These effects were mediated through its downstream effector, complement component C3, to prime common progenitor cells toward adipogenesis rather than osteoblastogenesis through inhibiting Wnt/ß-catenin signaling. Conclusions: Adipsin promotes new adipocyte formation and affects skeletal remodeling in the BM niche. Our study reveals a novel mechanism whereby the BM sustains its own plasticity through paracrine and endocrine actions of a unique adipokine. Funding: This work was supported by the National Institutes of Health T32DK007328 (NA), F31DK124926 (NA), R01DK121140 (JCL), R01AR068970 (BZ), R01AR071463 (BZ), R01DK112943 (LQ), R24DK092759 (CJR), and P01HL087123 (LQ).


Assuntos
Adiposidade , Medula Óssea/metabolismo , Fator D do Complemento/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Fator D do Complemento/metabolismo , Feminino , Humanos , Masculino , Camundongos
3.
J Hepatol ; 73(2): 361-370, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32135178

RESUMO

BACKGROUND & AIMS: Obesity is a well-established risk factor for type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH), but the underlying mechanisms remain incompletely understood. Herein, we aimed to identify novel pathogenic factors (and possible therapeutic targets) underlying metabolic dysfunction in the liver. METHODS: We applied a tandem quantitative proteomics strategy to enrich and identify transcription factors (TFs) induced in the obese liver. We used flow cytometry of liver cells to analyze the source of the induced TFs. We employed conditional knockout mice, shRNA, and small-molecule inhibitors to test the metabolic consequences of the induction of identified TFs. Finally, we validated mouse data in patient liver biopsies. RESULTS: We identified PU.1/SPI1, the master hematopoietic regulator, as one of the most upregulated TFs in livers from diet-induced obese (DIO) and genetically obese (db/db) mice. Targeting PU.1 in the whole liver, but not hepatocytes alone, significantly improved glucose homeostasis and suppressed liver inflammation. Consistently, treatment with the PU.1 inhibitor DB1976 markedly reduced inflammation and improved glucose homeostasis and dyslipidemia in DIO mice, and strongly suppressed glucose intolerance, liver steatosis, inflammation, and fibrosis in a dietary NASH mouse model. Furthermore, hepatic PU.1 expression was positively correlated with insulin resistance and inflammation in liver biopsies from patients. CONCLUSIONS: These data suggest that the elevated hematopoietic factor PU.1 promotes liver metabolic dysfunction, and may be a useful therapeutic target for obesity, insulin resistance/T2D, and NASH. LAY SUMMARY: Expression of the immune regulator PU.1 is increased in livers of obese mice and people. Blocking PU.1 improved glucose homeostasis, and reduced liver steatosis, inflammation and fibrosis in mouse models of non-alcoholic steatohepatitis. Inhibition of PU.1 is thus a potential therapeutic strategy for treating obesity-associated liver dysfunction and metabolic diseases.


Assuntos
Camundongos Obesos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas , Transativadores , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Regulação para Cima
4.
Diabetes ; 68(6): 1156-1167, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936148

RESUMO

Hepatocyte glucose production is a complex process that integrates cell-autonomous mechanisms with cellular signaling, enzyme activity modulation, and gene transcription. Transcriptional mechanisms controlling glucose production are redundant and involve nuclear hormone receptors and unliganded transcription factors (TFs). Our knowledge of this circuitry is incomplete. Here we used DNA affinity purification followed by mass spectrometry to probe the network of hormone-regulated TFs by using phosphoenolpyruvate carboxykinase (Pck1) and glucose-6-phosphatase (G6pc) in liver and primary hepatocytes as model systems. The repertoire of insulin-regulated TFs is unexpectedly broad and diverse. Whereas in liver the two test promoters are regulated by largely overlapping sets of TFs, in primary hepatocytes Pck1 and G6pc regulation diverges. Insulin treatment preferentially results in increased occupancy by the two promoters, consistent with a model in which the hormone's primary role is to recruit corepressors rather than to clear activators. Nine insulin-responsive TFs are present in both models, but only FoxK1, FoxA2, ZFP91, and ZHX3 require an intact Pck1p insulin response sequence for binding. Knockdown of FoxK1 in primary hepatocytes decreased both glucose production and insulin's ability to suppress it. The findings expand the repertoire of insulin-dependent TFs and identify FoxK1 as a contributor to insulin signaling.


Assuntos
Fatores de Transcrição Forkhead/genética , Glucose-6-Fosfatase/genética , Hepatócitos/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Animais , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Gluconeogênese/genética , Camundongos , Cultura Primária de Células , Fatores de Transcrição
5.
J Clin Invest ; 128(6): 2600-2612, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589839

RESUMO

Thiazolidinediones (TZDs) are PPARγ agonists with potent insulin-sensitizing effects. However, their use has been curtailed by substantial adverse effects on weight, bone, heart, and hemodynamic balance. TZDs induce the deacetylation of PPARγ on K268 and K293 to cause the browning of white adipocytes. Here, we show that targeted PPARγ mutations resulting in constitutive deacetylation (K268R/K293R, 2KR) increased energy expenditure and protected from visceral adiposity and diet-induced obesity by augmenting brown remodeling of white adipose tissues. Strikingly, when 2KR mice were treated with rosiglitazone, they maintained the insulin-sensitizing, glucose-lowering response to TZDs, while displaying little, if any, adverse effects on fat deposition, bone density, fluid retention, and cardiac hypertrophy. Thus, deacetylation appears to fulfill the goal of dissociating the metabolic benefits of PPARγ activation from its adverse effects. Strategies to leverage PPARγ deacetylation may lead to the design of safer, more effective agonists of this nuclear receptor in the treatment of metabolic diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Obesidade/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Acetilação/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Peso Corporal/genética , Metabolismo Energético/genética , Feminino , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , Rosiglitazona/farmacologia
7.
ACS Nano ; 11(9): 9223-9230, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28914527

RESUMO

Obesity is one of the most serious public health problems in the 21st century that may lead to many comorbidities such as type-2 diabetes, cardiovascular diseases, and cancer. Current treatments toward obesity including diet, physical exercise, pharmacological therapy, as well as surgeries are always associated with low effectiveness or undesired systematical side effects. In order to enhance treatment efficiency with minimized side effects, we developed a transcutaneous browning agent patch to locally induce adipose tissue transformation. This microneedle-based patch can effectively deliver browning agents to the subcutaneous adipocytes in a sustained manner and switch on the "browning" at the targeted region. It is demonstrated that this patch reduces treated fat pad size, increases whole body energy expenditure, and improves type-2 diabetes in vivo in a diet-induced obesity mouse model.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Fármacos Antiobesidade/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Hipoglicemiantes/administração & dosagem , Obesidade/tratamento farmacológico , Rosiglitazona/administração & dosagem , Adesivo Transdérmico , Adipócitos Brancos/efeitos dos fármacos , Animais , Fármacos Antiobesidade/uso terapêutico , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Rosiglitazona/uso terapêutico
8.
J Lipid Res ; 58(4): 681-694, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28179399

RESUMO

Eukaryotic cells store neutral lipids in cytoplasmic lipid droplets (LDs) enclosed in a monolayer of phospholipids and associated proteins [LD proteins (LDPs)]. Growing evidence has demonstrated that LDPs play important roles in the pathogenesis of liver diseases. However, the composition of liver LDPs and the role of their alterations in hepatosteatosis are not well-understood. In this study, we performed liver proteome and LD sub-proteome profiling to identify enriched proteins in LDs as LDPs, and quantified their changes in a high-fat diet (HFD)-induced fatty liver model. Among 5,000 quantified liver proteins, 101 were enriched by greater than 10-fold in the LD sub-proteome and were classified as LDPs. Differential profiling of LDPs in HFD-induced fatty liver provided a list of candidate LDPs for functional investigation. We tested the function of an upregulated LDP, S100a10, in vivo with adenovirus-mediated gene silencing and found, unexpectedly, that knockdown of S100a10 accelerated progression of HFD-induced liver steatosis. The S100A10 interactome revealed a connection between S100A10 and lipid transporting proteins, suggesting that S100A10 regulates the development and formation of LDs by transporting and trafficking. This study identified LD-enriched sub-proteome in homeostatic as well as HFD-induced fatty livers, providing a rich resource for the LDP research field.


Assuntos
Fígado Gorduroso/genética , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Proteoma/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Gotículas Lipídicas/patologia , Metabolismo dos Lipídeos/genética , Camundongos , Fosfolipídeos/genética , Biossíntese de Proteínas/genética , Proteoma/metabolismo , Proteômica
9.
Mol Metab ; 5(10): 948-958, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27689007

RESUMO

OBJECTIVE: Genetic background largely contributes to the complexity of metabolic responses and dysfunctions. Induction of brown adipose features in white fat, known as brown remodeling, has been appreciated as a promising strategy to offset the positive energy balance in obesity and further to improve metabolism. Here we address the effects of genetic background on this process. METHODS: We investigated browning remodeling in a depot-specific manner by comparing the response of C57BL/6J, 129/Sv and FVB/NJ mouse strains to cold. RESULTS: Surprisingly, 129/Sv and FVB/NJ mice showed distinct brown remodeling features despite their similar resistance to metabolic disorders in comparison to the obesity-prone C57BL/6J mice. FVB/NJ mice demonstrated a preference of brown remodeling in inguinal subcutaneous white adipose tissue (iWAT), whereas 129/Sv mice displayed robust brown remodeling in visceral epididymal fat (eWAT). We further compared gene expression in different depots by RNA-sequencing and identified Hoxc10 as a novel "brake" of brown remodeling in iWAT. CONCLUSION: Rodent genetic background determines the brown remodeling of different white fat depots. This study provides new insights into the role of genetic variation in fat remodeling in susceptibility to metabolic diseases.

10.
Mol Cell Proteomics ; 15(10): 3190-3202, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27562671

RESUMO

Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level.


Assuntos
Fígado/citologia , Proteoma/análise , Análise de Célula Única/métodos , Animais , Ontologia Genética , Fígado/metabolismo , Camundongos , Proteômica/métodos
11.
J Biol Chem ; 288(28): 20547-57, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23723067

RESUMO

BCL2-associated athanogene 6 (BAG6) is a member of the BAG protein family, which is implicated in diverse cellular processes including apoptosis, co-chaperone, and DNA damage response (DDR). Recently, it has been shown that BAG6 forms a stable complex with UBL4A and GET4 and functions in membrane protein targeting and protein quality control. The BAG6 sequence contains a canonical nuclear localization signal and is localized predominantly in the nucleus. However, GET4 and UBL4A are found mainly in cytoplasm. Whether GET4 and UBL4A are also involved in DDR in the context of the BAG6 complex remains unknown. Here, we provide evidence that nuclear BAG6-UBL4A-GET4 complex mediates DDR signaling and damage-induced cell death. BAG6 appears to be the central component for the process, as depletion of BAG6 leads to the loss of both UBL4A and GET4 proteins and resistance to cell killing by DNA-damaging agents. In addition, nuclear localization of BAG6 and phosphorylation of BAG6 by ATM/ATR are also required for cell killing. UBL4A and GET4 translocate to the nucleus upon DNA damage and appear to play redundant roles in cell killing, as depletion of either one has no effect but co-depletion leads to resistance. All three components of the BAG6 complex are required for optimal DDR signaling, as BAG6, and to a lesser extent, GET4 and UBL4A, regulate the recruitment of BRCA1 to sites of DNA damage. Together our results suggest that the nuclear BAG6 complex is an effector in DNA damage response pathway and its phosphorylation and nuclear localization are important determinants for its function.


Assuntos
Dano ao DNA , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Ubiquitinas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Células MCF-7 , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Mutação , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinas/genética
12.
Mol Cell Proteomics ; 12(2): 473-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197792

RESUMO

Nuclear receptors (NRs) are a superfamily of transcription factors that, upon binding to ligands, bind specific DNA sequences and regulate a transcriptional program governing cell proliferation, differentiation, and metabolism. In the liver, by sensing lipid-soluble hormones and dietary lipids and governing the expression of key liver metabolic genes, NR proteins direct a large array of key hepatic functions that include lipid and glucose metabolism, bile secretion, and bile acid homeostasis. Although much has been learned about the physiology of NRs, little is known about their protein expression and DNA binding activity in the liver because of their low abundance and the lack of high-throughput methods for detection at the protein level. Here we report a method for profiling the DNA binding activity of the NR transcription factor superfamily in mouse liver. We use DNA constructs of hormone response elements (HREs) as affinity reagents to enrich NR proteins from nuclear extracts of mouse liver and then identify them using mass spectrometry. We evaluated 20 DNA constructs containing various combinations of HREs for their ability to enrich endogenous NR proteins and found that two different HREs are sufficient to achieve isolation and identification of nearly all endogenous NR proteins from one mouse liver. We have detected proteins for 35 members of the NR family out of 41 that are expressed in mouse liver at mRNA level. Thus, this method allows coverage of most of the whole NR proteome and establishes a practical assay for the investigation of NR actions in mouse liver. We anticipate that this method will find widespread use in future investigations of NR actions in liver biology and pathology. Furthermore, this workflow is a useful tool for NR biologists interested in measuring NR expression, DNA binding, post-translational modifications, cellular localization, and other functional aspects of NRs in organs under normal physiological and pathological conditions, as well as during pharmacological intervention.


Assuntos
DNA/química , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/química , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA/genética , DNA/metabolismo , Feminino , Regulação da Expressão Gênica , Ligantes , Fígado/química , Fígado/citologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Elementos de Resposta , Fatores Sexuais
13.
Mol Syst Biol ; 7: 536, 2011 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-21988832

RESUMO

Proteome-scale protein interaction maps are available for many organisms, ranging from bacteria, yeast, worms and flies to humans. These maps provide substantial new insights into systems biology, disease research and drug discovery. However, only a small fraction of the total number of human protein-protein interactions has been identified. In this study, we map the interactions of an unbiased selection of 5026 human liver expression proteins by yeast two-hybrid technology and establish a human liver protein interaction network (HLPN) composed of 3484 interactions among 2582 proteins. The data set has a validation rate of over 72% as determined by three independent biochemical or cellular assays. The network includes metabolic enzymes and liver-specific, liver-phenotype and liver-disease proteins that are individually critical for the maintenance of liver functions. The liver enriched proteins had significantly different topological properties and increased our understanding of the functional relationships among proteins in a liver-specific manner. Our data represent the first comprehensive description of a HLPN, which could be a valuable tool for understanding the functioning of the protein interaction network of the human liver.


Assuntos
Fígado , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Bases de Dados de Proteínas , Inativação Gênica/efeitos dos fármacos , Genes Reporter , Células HEK293 , Humanos , Imunoprecipitação , Fígado/metabolismo , Luciferases/análise , Fases de Leitura Aberta , Plasmídeos , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , RNA Interferente Pequeno/farmacologia , Saccharomyces cerevisiae/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
14.
Cell Signal ; 23(5): 883-92, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21262351

RESUMO

Keap1 is an inhibitor of Nrf2 involved in Nrf2-dependent antioxidant response. However, the mechanisms on how Keap1 regulates Nrf2-ARE signaling pathway remains to be determined. Here, by using a yeast two-hybrid technology, p65 subunit of NF-κB transcription factor was identified as a partner of Keap1. We show that Keap1 physically associated with p65 in vivo and in vitro. Overexpression of p65 inhibited Nrf2-dependent transcription induced by diethylmaleate (DEM) or tert-butyl hydroxyquinone (tBHQ). Knock down of Keap1 by RNA interference partially blocked the repression of Nrf2-mediated activation by p65. It was demonstrated that p65 decreased Nrf2 binding to its cognate DNA sequences and enhanced Nrf2 ubiquitination. The N-terminal region of p65 is necessary for both the interaction with Keap1 and its transcriptional suppression activity. Moreover, nuclear translocation of Keap1 was augmented by p65. Taken together, our findings suggest that NF-κB signaling inhibits Nrf2-ARE pathway through the interaction of p65 and Keap1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição RelA/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Humanos , Hidroquinonas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 1 Associada a ECH Semelhante a Kelch , Maleatos/farmacologia , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Elementos de Resposta , Transdução de Sinais , Ubiquitinação
15.
BMC Biotechnol ; 10: 78, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20979660

RESUMO

BACKGROUND: Analysis of protein-protein interactions (PPIs) is a valuable approach for the characterization of huge networks of protein complexes or proteins of unknown function. Co-immunoprecipitation (coIP) using affinity resins coupled to protein A/G is the most widely used method for PPI detection. However, this traditional large scale resin-based coIP is too laborious and time consuming. To overcome this problem, we developed a miniaturized sandwich immunoassay platform (MSIP) by combining antibody array technology and coIP methods. RESULTS: Based on anti-FLAG antibody spotted aldehyde slides, MSIP enables simple, rapid and large scale detection of PPIs by fluorescent labeling anti-myc antibody. By analyzing well-known interacting and non-interacting protein pairs, MSIP was demonstrated to be highly accurate and reproducible. Compared to traditional resin-based coIP, MSIP results in higher sensitivity and enhanced throughput, with the additional benefit of digital read-outs. In addition, MSIP was shown to be a highly useful validation platform to confirm PPI candidates that have been identified from yeast two hybrid systems. CONCLUSIONS: In conclusion, MSIP is proved to be a simple, cost-saving and highly efficient technique for the comprehensive study of PPIs.


Assuntos
Imunoensaio/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/análise , Células HEK293 , Humanos , Imunoprecipitação/métodos , Análise Serial de Proteínas/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Anal Biochem ; 404(2): 244-6, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20460096

RESUMO

Here we report a visual chip-based coimmunoprecipitation (vChip-coIP) platform for analysis of protein-protein interactions (PPIs) by combining advantages of an antibody microarray, traditional coIP, and a silver enhancement detection method. The chip was fabricated by spotting anti-Flag antibody on aldehyde-modified slides, and the resulting platform could assay immunoprecipitate from a small amount of crude cell lysates containing Flag-bait and Myc-prey. The interaction signals are visible using biotinylated anti-Myc antibody and colloidal gold-labeled streptavidin followed by a silver enhancement detection method. It is shown that vChip-coIP is a simple, cost-effective, and highly efficient platform for the comprehensive study of PPIs.


Assuntos
Anticorpos/química , Imunoprecipitação/métodos , Análise Serial de Proteínas/métodos , Mapeamento de Interação de Proteínas , Anticorpos/imunologia , Biotinilação , Linhagem Celular , Ouro/química , Humanos , Ligação Proteica , Prata/química , Estreptavidina/química
17.
Cell Signal ; 20(5): 942-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18276110

RESUMO

Tribbles 3 homolog (TRB3) is recently identified as a scaffold-like regulator of various signal transducers and has been implicated in several processes including insulin signaling, NF-kappaB signaling, lipid metabolism and BMP signaling. To further understand cellular mechanisms of TRB3 regulation, we performed a yeast two-hybrid screen to identify novel TRB3 interacting proteins and totally obtained ten in-frame fused preys. Candidate interactions were validated by co-immunoprecipitation assays in mammalian cells. We further characterized the identified proteins sorted by Gene Ontology Annotation. Its interaction with the E3 ubiquitin ligase SIAH1 was further investigated. SIAH1 could interact with TRB3 both in vitro and in vivo. Importantly, SIAH1 targeted TRB3 for proteasome-dependent degradation. Cotransfection of SIAH1 could withdraw up-regulation of TGF-beta signaling by TRB3, suggesting SIAH1-induced degradation of TRB3 represents a potential regulatory mechanism for TGF-beta signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
18.
Wei Sheng Wu Xue Bao ; 43(3): 301-7, 2003 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-16279194

RESUMO

A novel radiation-resistant bacterium was isolated from soil of lake bank in Beijing. The bacterium produced orange-pigmented colonies and formed rod-shaped cells that stained gram negative alike the Deinobacter grandis previously described by Japan's scientist. It was found with electron microscopy that the isolate is of 0.6 microm - 1.6 microm size and has a 30-40 nm thickness of cell wall, being slightly larger and thicker than the Deinobacter grandis. There was a difference in the concentration and molecule weight of catalase between the isolate and the Deincoccus radiodurans R1. The deoxyribonucleic acid guanine plus cytosine (G + C) base ratio was 70.7 mol%. 16S RNA gene sequencing also showed that this rod-shaped bacterium possessed a high homology with the Deinobacter grandis, suggesting that it might be classified into the genus Deinobacter and constitute a new species in this genus.


Assuntos
Deinococcus/isolamento & purificação , Deinococcus/efeitos da radiação , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , DNA Bacteriano/genética , DNA Ribossômico , Deinococcus/classificação , Deinococcus/genética , Água Doce/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA