Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biomolecules ; 13(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37759755

RESUMO

Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide's inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition.


Assuntos
Cardiotoxicidade , Loperamida , Humanos , Animais , Cobaias , Coelhos , Loperamida/toxicidade , Cardiotoxicidade/etiologia , Arritmias Cardíacas/induzido quimicamente , Coração , Diarreia
2.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980298

RESUMO

Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células Cultivadas , Ensaios de Triagem em Larga Escala , Neurônios , Convulsões/induzido quimicamente
3.
Eur J Pharmacol ; 931: 175189, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987255

RESUMO

BACKGROUND: Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD: In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS: Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION: Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Neurônios/metabolismo , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transmissão Sináptica
4.
Front Physiol ; 13: 838435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547580

RESUMO

Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.

5.
Front Pharmacol ; 12: 604713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841140

RESUMO

Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.

6.
Channels (Austin) ; 15(1): 239-252, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33465001

RESUMO

Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.


Assuntos
Miócitos Cardíacos , Células Gigantes , Potenciais da Membrana , Técnicas de Patch-Clamp , Potássio
7.
Clin Pharmacol Ther ; 109(6): 1606-1617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33283267

RESUMO

Drugs that prolong QT may cause torsade de pointes (TdP). However, translation of nonclinical assessment of QT prolongation or hERG channel, targeted by QT-prolonging drugs, into clinical TdP risk has been insufficient to date. In this blinded study, we confirmed the utility of a Normalized TdP Score System in predicting drug-induced TdP risks among 34 drugs, including 28 with low, intermediate, and high TdP risks under the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative plus six compounds with names blinded to the investigators, using the rabbit ventricular wedge assay. Concentration-dependent TdP scores were determined by drug-induced changes in QT, Tp-e , and proarrhythmias. Disclosure of the names and testing concentrations was made after completion of the experiments and report to the sponsors. Drugs' normalized TdP scores were calculated thereafter based on their respective free clinical maximum concentration (Cmax ). Drugs' normalized TdP scores were calculated and ranked for 33 drugs, excluding 1 investigational drug, and the TdP risks of the 28 CiPA drugs were correctly distinguished according to their respective categories of low, intermediate, and high TdP risks under the CiPA initiative. Accordingly, we are able to propose the cutoff values of the normalized TdP scores at 1 × Cmax : ≤ 0, > 0 to < 0.65 and ≥ 0.65, respectively, for low, intermediate, and high risk. This blinded study supports utility of our Normalized TdP Score System in predicting drug-induced TdP risks in 33 drugs, including 28 used for characterization of other assays under the CiPA initiative. However, these results need to be replicated in other laboratories.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/epidemiologia , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/epidemiologia , Animais , Avaliação Pré-Clínica de Medicamentos , Eletrocardiografia , Ventrículos do Coração/fisiopatologia , Síndrome do QT Longo/induzido quimicamente , Coelhos , Medição de Risco
8.
Bioorg Med Chem Lett ; 30(23): 127602, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038544

RESUMO

G-protein coupled receptor kinase 2 (GRK2), which is upregulated in the failing heart, appears to play a critical role in heart failure (HF) progression in part because enhanced GRK2 activity promotes dysfunction of ß-adrenergic signaling and myocyte death. An orally bioavailable GRK2 inhibitor could offer unique therapeutic outcomes that cannot be attained by current heart failure treatments that directly target GPCRs or angiotensin-converting enzyme. Herein, we describe the discovery of a potent, selective, and orally bioavailable GRK2 inhibitor, 8h, through high-throughput screening, hit-to-lead optimization, structure-based design, molecular modelling, synthesis, and biological evaluation. In the cellular target engagement assays, 8h enhances isoproterenol-mediated cyclic adenosine 3',5'-monophosphate (cAMP) production in HEK293 cells overexpressing GRK2. Compound 8h was further evaluated in a human stem cell-derived cardiomyocyte (HSC-CM) contractility assay and potentiated isoproterenol-induced beating rate in HSC-CMs.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Ftalazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Ensaios Enzimáticos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Ftalazinas/síntese química , Ftalazinas/farmacocinética , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Relação Estrutura-Atividade
9.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822771

RESUMO

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotoxinas/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Guias de Prática Clínica como Assunto/normas , Estudos de Validação como Assunto , Células-Tronco Adultas/patologia , Células-Tronco Adultas/fisiologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/patologia
10.
Eur J Pharmacol ; 858: 172474, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31238068

RESUMO

The Kv7 family of voltage-dependent non-inactivating potassium channels is composed of five members, of which four are expressed in the CNS. Kv7.2, 7.3 and 7.5 are responsible for the M-current, which plays a critical role in the regulation of neuronal excitability. Stimulation of M1 muscarinic acetylcholine receptor, M1 receptor, increases neuronal excitability by suppressing the M-current generated by the Kv7 channel family. The M-current modulation via M1 receptor is well-described in in vitro assays using cell lines and in native rodent tissue. However, this mechanism was not yet reported in human induced pluripotent stem cells (hiPSC) derived neurons. In the present study, we investigated the effects of both agonists and antagonists of Kv7.2/7.3 channel and M1 receptor in hiPSC derived neurons and in primary rat cortical neuronal cells. The role of M1 receptors in the modulation of neuronal excitability could be demonstrated in both rat primary and hiPSC neurons. The M1 receptors agonist, xanomeline, increased neuronal excitability in both rat cortical and the hiPSC neuronal cells. Furthermore, M1 receptor agonist-induced neuronal excitability in vitro was reduced by an agonist of Kv7.2/7.3 in both neuronal cells. These results show that hiPSC derived neurons recreate the modulation of the M-current by the muscarinic receptor in hiPSC neurons similarly to rat native neurons. Thus, hiPSC neurons could be a useful human-based cell assay for characterization of drugs that affect neuronal excitability and/or induce seizure activity by modulation of M1 receptors or inhibition of Kv7 channels.


Assuntos
Fenômenos Eletrofisiológicos , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/citologia , Receptor Muscarínico M1/metabolismo , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canal de Potássio KCNQ2/agonistas , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/agonistas , Canal de Potássio KCNQ3/antagonistas & inibidores , Canal de Potássio KCNQ3/genética , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores
11.
Toxicol Sci ; 170(2): 345-356, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31020317

RESUMO

The goal of this research consortium including Janssen, MSD, Ncardia, FNCR/LBR, and Health and Environmental Sciences Institute (HESI) was to evaluate the utility of an additional in vitro assay technology to detect potential drug-induced long QT and torsade de pointes (TdP) risk by monitoring cytosolic free Ca2+ transients in human stem-cell-derived cardiomyocytes (hSC-CMs). The potential proarrhythmic risks of the 28 comprehensive in vitro proarrhythmia assay (CiPA) drugs linked to low, intermediate, and high clinical TdP risk were evaluated in a blinded manner using Ca2+-sensitive fluorescent dye assay recorded from a kinetic plate reader system (Hamamatsu FDSS/µCell and FDSS7000) in 2D cultures of 2 commercially available hSC-CM lines (Cor.4U and CDI iCell Cardiomyocytes) at 3 different test sites. The Ca2+ transient assay, performed at the 3 sites using the 2 different hSC-CMs lines, correctly detected potential drug-induced QT prolongation among the 28 CiPA drugs and detected cellular arrhythmias-like/early afterdepolarization in 7 of 8 high TdP-risk drugs (87.5%), 6 of 11 intermediate TdP-risk drugs (54.5%), and 0 of 9 low/no TdP-risk drugs (0%). The results were comparable among the 3 sites and from 2 hSC-CM cell lines. The Ca2+ transient assay can serve as a user-friendly and higher throughput alternative to complement the microelectrode array and voltage-sensing optical action potential recording assays used in the HESI-CiPA study for in vitro assessment of drug-induced long QT and TdP risk.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Cálcio/metabolismo , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Miócitos Cardíacos/metabolismo , Risco , Células-Tronco/citologia
12.
Front Pharmacol ; 10: 1374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920633

RESUMO

The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary ß1-subunit, this subunit can also affect the channel's pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+ß1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when ß1 was present. Thus, ß1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including ß1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+ß1.

13.
J Electrocardiol ; 51(6): 1077-1083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30497734

RESUMO

INTRODUCTION: Preventing sudden cardiac death (SCD) is one of the main goals in hypertrophic cardiomyopathy (HCM). Many variables have been proposed, however the European and American guidelines do not incorporate any ECG or Holter monitoring derived variables other than the presence of ventricular arrhythmia in their risk stratification models. In the present study we evaluated electrocardiographic parameters in risk stratification of HCM. METHODS AND RESULTS: Novel electrocardiographic parameters including the index of cardio-electrophysiological balance (iCEB), individualized QT correction (QTi) and QT rate dependence were evaluated along with established risk factors. A composite endpoint of SCD was defined as out of hospital cardiac arrest, appropriate ICD shock and sustained ventricular tachycardia. Cox regression analysis was used to evaluate predictors of SCD. Out of the 466 HCM patients, 31 reached the composite endpoint during a follow up of 75 ±â€¯86 months. In a multivariate model, nor iCEB, QTi or QT rate dependence were predictors of SCD. Only male gender (p < 0.01; OR 13.1; CI 1.74-98.83), negative T waves in the inferior leads (p = 0.04; OR 2.51; CI 1.03-6.13) and familial sudden death (p < 0.01; OR 3.03; CI 1.39-6.59) were significant predictors. On top of either the ESC risk score or the 3 traditional 'American risk factors', only male gender was a significant predictor of SCD. CONCLUSION: No ECG or Holter monitoring parameters added in risk stratification for SCD in HCM. However, male gender and negative T waves in the inferior leads are promising novel markers to evaluate in larger cohorts.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Eletrocardiografia , Adulto , Cardiomiopatia Hipertrófica/complicações , Morte Súbita Cardíaca/etiologia , Eletrocardiografia Ambulatorial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , Fatores Sexuais , Software
14.
Stem Cell Reports ; 11(6): 1365-1377, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30540961

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Algoritmos , Sinalização do Cálcio , Descoberta de Drogas , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Risco
15.
Quant Imaging Med Surg ; 8(8): 754-769, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30306056

RESUMO

BACKGROUND: An experimental imaging platform for longitudinal monitoring and evaluation of cardiac morphology-function changes has been long desired. We sought to establish such a platform by using a rabbit model of reperfused myocardial infarction (MI) that develops chronic left ventricle systolic dysfunction (LVSD) within 7 weeks. METHODS: Fifty-five New Zeeland white (NZW) rabbits received sham-operated or 60-min left circumflex coronary artery (LCx) ligation followed by reperfusion. Cardiac magnetic resonance imaging (cMRI), transthoracic echocardiography (echo), and blood samples were collected at baseline, in acute (48 hours or 1 week) and chronic (7 weeks) stage subsequent to MI for in vivo assessment of infarct size, cardiac morphology, LV function, and myocardial enzymes. Seven weeks post MI, animals were sacrificed and heart tissues were processed for histopathological staining. RESULTS: The success rate of surgical operation was 87.27%. The animal mortality rates were 12.7% and 3.6% both in acute and chronic stage separately. Serum levels of the myocardial enzyme cardiac Troponin T (cTnT) were significantly increased in MI rabbits as compared with sham animals after 4 hours of operation (P<0.05). According to cardiac morphology and function changes, 4 groups could be distinguished: sham rabbits (n=12), and MI rabbits with no (MI_NO_LVSD; n=10), moderate (MI_M_LVSD; n=9) and severe (MI_S_LVSD; n=15) LVSD. No significant differences in cardiac function or wall thickening between sham and MI_NO_LVSD rabbits were observed at both stages using both cMRI and echo methods. cMRI data showed that MI_M_LVSD rabbits exhibited a reduction of ejection fraction (EF) and an increase in end-systolic volume (ESV) at the acute phase, while at the chronic stage these parameters did not change further. Moreover, in MI_S_LVSD animals, these observations were more striking at the acute stage followed by a further decline in EF and increase in ESV at the chronic stage. Lateral wall thickening determined by cMRI was significantly decreased in MI_M_LVSD versus MI_NO_LVSD animals at both stages (P<0.05). As for MI_S_LVSD versus MI_M_LVSD rabbits, the thickening of anterior, inferior and lateral walls was significantly more decreased at both stages (P<0.05). Echo confirmed the findings of cMRI. Furthermore, these in vivo outcomes including those from vivid cine cMRI could be supported by exactly matched ex vivo histomorphological evidences. CONCLUSIONS: Our findings indicate that chronic LVSD developed over time after surgery-induced MI in rabbits can be longitudinally evaluated using non-invasive imaging techniques and confirmed by the entire-heart-slice histomorphology. This experimental LVSD platform in rabbits may interest researchers in the field of experimental cardiology and help strengthen drug development and translational research for the management of cardiovascular diseases.

16.
Cell Rep ; 24(13): 3582-3592, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257217

RESUMO

To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ∼0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletrofisiologia/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Cardiotoxicidade , Linhagem Celular , Reprogramação Celular , Avaliação Pré-Clínica de Medicamentos/normas , Eletrofisiologia/normas , Humanos , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia
17.
Toxicol Sci ; 164(2): 550-562, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718449

RESUMO

Recent in vitro cardiac safety studies demonstrate the ability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to detect electrophysiologic effects of drugs. However, variability contributed by unique approaches, procedures, cell lines, and reagents across laboratories makes comparisons of results difficult, leading to uncertainty about the role of hiPSC-CMs in defining proarrhythmic risk in drug discovery and regulatory submissions. A blinded pilot study was conducted to evaluate the electrophysiologic effects of 8 well-characterized drugs on 4 cardiomyocyte lines using a standardized protocol across 3 microelectrode array platforms (18 individual studies). Drugs were selected to define assay sensitivity of prominent repolarizing currents (E-4031 for IKr, JNJ303 for IKs) and depolarizing currents (nifedipine for ICaL, mexiletine for INa) as well as drugs affecting multichannel block (flecainide, moxifloxacin, quinidine, and ranolazine). Inclusion criteria for final analysis was based on demonstrated sensitivity to IKr block (20% prolongation with E-4031) and L-type calcium current block (20% shortening with nifedipine). Despite differences in baseline characteristics across cardiomyocyte lines, multiple sites, and instrument platforms, 10 of 18 studies demonstrated adequate sensitivity to IKr block with E-4031 and ICaL block with nifedipine for inclusion in the final analysis. Concentration-dependent effects on repolarization were observed with this qualified data set consistent with known ionic mechanisms of single and multichannel blocking drugs. hiPSC-CMs can detect repolarization effects elicited by single and multichannel blocking drugs after defining pharmacologic sensitivity to IKr and ICaL block, supporting further validation efforts using hiPSC-CMs for cardiac safety studies.


Assuntos
Fármacos Cardiovasculares/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/instrumentação , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Projetos Piloto , Reprodutibilidade dos Testes
18.
Eur J Pharmacol ; 832: 145-155, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782862

RESUMO

Patients with heart disease have a higher risk to develop cardiac arrhythmias, either spontaneously or drug-induced. In this study, we have used a rabbit model of myocardial infarction (MI) with severe left ventricular systolic dysfunction (LVSD) to study potential drug-induced cardiac risks with N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide (flecainide). Upon ligation of the left circumflex arteries, male New Zealand White rabbits developed a large MI and moderate or severe LVSD 7 weeks after surgery, in comparison to SHAM-operated animals. Subsequently, animals were exposed to escalating doses of flecainide (0.25-4 mg/kg) or solvent. Electrocardiograms (ECG) were recorded before surgery, 1 and 7 weeks after surgery and continuously during the drug protocol. The ECG biomarker iCEB (index of Cardio-Electrophysiological Balance = QT/QRS ratio) was calculated. During the ECG recording at week 1 and week 7 post MI, rabbits had no spontaneous cardiac arrhythmias. When rabbits were exposed to escalating doses of flecainide, 2 out of 5 rabbits with MI and moderate LVSD versus 0 out of 5 solvent-treated rabbits developed arrhythmias, such as ventricular tachycardia/ventricular fibrillation. These were preceded by a marked decrease of iCEB just before the onset (from 4.09 to 2.42 and from 5.56 to 2.25, respectively). Furthermore, 1 out of 5 MI rabbits with moderate LVSD and 1 out of 7 MI rabbits with severe LVSD developed total atrioventricular block after flecainide infusion and died. This rabbit model of MI and severe LVSD may be useful for preclinical evaluation of drug (similar mechanism as flecainide)-induced arrhythmic risks, which might be predicted by iCEB.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sístole , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/diagnóstico por imagem , Modelos Animais de Doenças , Eletrocardiografia , Flecainida/farmacologia , Imageamento por Ressonância Magnética , Masculino , Coelhos , Risco , Sístole/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-29421525

RESUMO

INTRODUCTION: Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. METHODS: We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/µCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. RESULTS: We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). DISCUSSION: In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cálcio/metabolismo , Corantes Fluorescentes/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Miócitos Cardíacos/efeitos dos fármacos , Cálcio/química , Fármacos Cardiovasculares/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Eletrodos , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA