RESUMO
C3H6 is a crucial building block for many chemicals, yet separating it from other C3 hydrocarbons presents a significant challenge. Herein, we report a hydrolytically stable Cu4I4-triazolate metal-organic framework (MOF) (JNU-9-CH3) featuring 1D channels decorated with readily accessible iodine and nitrogen atoms from Cu4I4 clusters and triazolate linkers, respectively. The exposed iodine and nitrogen atoms allow for cooperative binding of C3 hydrocarbons, as evidenced by in situ single-crystal crystallography and Raman spectroscopy studies. As a result, JNU-9-CH3 exhibits substantially stronger binding affinity for C3H4, CH2âCâCH2, and C3H8 than that for C3H6. Breakthrough experiments confirm its ability to directly separate C3H6 (≥99.99%) from C3H4/CH2âCâCH2/C3H8/C3H6 mixtures at varying ratios and flow rates. Overall, we illustrate the cooperative binding of C3 hydrocarbons in a Cu4I4-triazolate MOF and its highly efficient C3H6 purification from quaternary C3 mixtures. The study highlights the potential of MOF adsorbents with metal-iodide clusters for cooperative bindings and hydrocarbon separations.
RESUMO
Metal-organic frameworks (MOFs) that exhibit dynamic phase-transition behavior under external stimuli could have great potential in adsorptive separations. Here we report on a zinc-based microporous MOF (JNU-80) and its reversible transformation between two crystalline phases: large pore (JNU-80-LP) and narrow pore (JNU-80-NP). Specifically, JNU-80-LP can undergo a dehydration-induced cluster consolidation under heat treatment, resulting in JNU-80-NP with a reduced channel that allows exclusion of di-branched hexane isomers while high adsorption of linear and mono-branched hexane isomers. We further demonstrate the fabrication of MOF-polymer composite (JNU-80-NP-block) and its application in the purification of di-branched isomers from liquid-phase hexane mixtures (98 % di-branched) at room temperature, affording the di-branched hexane isomers with 99.5 % purity and close to 90 % recovery rate over ten cycles. This work illustrates an interesting dehydration-induced cluster consolidation in MOF structure and the ensuing channel shrinkage for sieving di-branched hexane isomers, which may have important implications for the development of MOFs with dynamic behavior and their potential applications in non-thermal driven separation technologies.
RESUMO
Machine learning is gaining momentum in the prediction and discovery of materials for specific applications. Given the abundance of metal-organic frameworks (MOFs), computational screening of the existing MOFs for propane/propylene (C3H8/C3H6) separation could be equally important for developing new MOFs. Herein, we report a machine learning-assisted strategy for screening C3H8-selective MOFs from the CoRE MOF database. Among the four algorithms applied in machine learning, the random forest (RF) algorithm displays the highest degree of accuracy. We experimentally verified the identified top-performing MOF (JNU-90) with its benchmark selectivity and separation performance of directly producing C3H6. Considering its excellent hydrolytic stability, JNU-90 shows great promise in the energy-efficient separation of C3H8/C3H6. This work may accelerate the development of MOFs for challenging separations.
RESUMO
Herein, an unprecedented cadmium-based metal-organic framework (JNU-106) fabricated by utilizing pyrazole-functionalized tetraphenylethylene ligands (Py-TPE) and rod-shaped secondary building units is reported, possessing a new (3,3,3,6,6,8)-connected topological network. Thanks to the ingeniously designed intramolecular charge transfer behavior, which originates from the congruent coplanarity between Py and TPE, JNU-106 exhibits intense green luminescence with a quantum yield increased by 1.5 times. The phenomenon of remarkable fluorescence quenching of JNU-106 reveals that it possesses extremely high anti-interference performance, superior sensitivity, and dedicated selectivity toward tetracycline antibiotics (TCAs) in aqueous solutions, which are comparable to those of the state-of-the-art porous sensing compounds. Taking the theoretical calculations and experimental results into account, the luminescence quenching is mainly attributed to the internal filtration effect and the static quenching effect. Considering the portable and rapid performance of JNU-106-based testing strips for sensing TCAs, the fabricated JNU-106 provides an alternative for ecological monitoring and environmental governance.
RESUMO
Recently, examples of metal-organic frameworks (MOFs) have been identified displaying ethane (C2H6) over ethylene (C2H4) adsorption selectivity. However, it remains a challenge to construct MOFs with both large C2H6 adsorption capacity and high C2H6/C2H4 adsorption selectivity, especially under humid conditions. Herein, we reported two isoreticular MOF-5 analogues (JNU-6 and JNU-6-CH3) and their potential applications in one-step separation of C2H4 from C2H6/C2H4 mixtures. The introduction of CH3 groups not only reduces the pore size from 5.4 Å in JNU-6 to 4.1 Å in JNU-6-CH3 but also renders an increased electron density on the pyrazolate N atoms of the organic linker. JNU-6-CH3 retains its framework integrity even after being immersed in water for six months. More importantly, it exhibits large C2H6 adsorption capacity (4.63 mmol g-1) and high C2H6/C2H4 adsorption selectivity (1.67) due to the optimized pore size and surface function. Breakthrough experiments on JNU-6-CH3 demonstrate that C2H4 can be directly separated from C2H6/C2H4 (50/50, v/v) mixtures, affording benchmark productivity of 22.06 and 18.71 L kg-1 of high-purity C2H4 (≥99.95%) under dry and humid conditions, respectively.
RESUMO
Single-emission luminescence sensors are less than satisfactory for complex systems due to their susceptibility to environmental disturbances. Lanthanum-based metal-organic frameworks (Ln-MOFs) with highly stable ratiometric dual-emission are regarded as promising luminescence probes owing to their fascinating ligand-to-metal energy transfer behaviors (also known as the antenna effect). Herein, we report the synthesis of a pair of isostructural europium-based MOFs (termed JNU-219 and JNU-220) by utilizing two X-shaped tetracarboxylate linkers, 4,4',4â³,4â´-benzene-2,3,5,6-tetrayl-tetrabenzoate (BTEB) and 4,4',4â³,4â´-pyrazine-2,3,5,6-tetrayl-tetrabenzoate (BTTB). Both JNU-219 and JNU-220 present the characteristic red luminescence of Eu3+, yet the pyrazine functionalization of the BTTB linker renders JNU-220 with significantly increased luminescence emission, almost 30 times that of JNU-219. As a result, the detection limit of JNU-220 for the ratiometric luminescence sensing of PO43- was determined to be as low as 0.22 µM, which is far superior to those of other reported MOF materials. Additionally, we demonstrate the excellent stability and reusability of JNU-220, further verifying its potential as a robust ratiometric luminescence probe.
RESUMO
The development of energy-saving technology for the efficient separation of olefin and paraffin is highly important for the chemical industry. Herein, we report a self-assembled Fe4 L6 capsule containing a hydrophobic cavity, which can be used to encapsulate and separate propylene/propane. The successful encapsulation of propylene and propane by the Fe4 L6 cage in a water solution was documented by NMR spectroscopy. The binding constants K for the Fe4 L6 cage toward propylene and propane were determined to be (5.0±0.1)×103 â M-1 and (2.1±0.7)×104 â M-1 in D2 O at 25 °C, respectively. Experiments and theoretical studies revealed that the cage exhibited multiple weak interactions with propylene and propane. The polymer-grade propylene (>99.5 %) can be obtained from a mixture of propylene and propane by using the Fe4 L6 cage as a separation material in a U-shaped glass tube. This work provides a new strategy for the separation of olefin/paraffin.
RESUMO
The first coordination-saturated buckyball with a C60 molecule totally encased in an icosidodecahedral Cu30 in a (µ30 -(η2 )30 )-fashion, namely C60 @Cu30 @Cl36 N12 , has been successfully realized by a C60 -templated assembly. The 48 outmost coordinating atoms (36Cl+12N) comprise a new simple polyhedron that is described by a ccf topology. Charge transfer from (CuI , Cl) to C60 explains the expansion of the light absorption up to 700â nm, and accounts for an ultrafast photophysical process that underpins its high photothermal conversion efficiency. This work makes a giant step forward in exohedral metallofullerene (ExMF) chemistry.
RESUMO
Interfacial charge transfer on the surface of heterogeneous photocatalysts dictates the efficiency of reactive oxygen species (ROS) generation and therefore the efficiency of aerobic oxidation reactions. Reticular chemistry in metal-organic frameworks (MOFs) allows for the rational design of donor-acceptor pairs to optimize interfacial charge-transfer kinetics. Herein, we report a series of isostructural fcu-topology Ni8-MOFs (termed JNU-212, JNU-213, JNU-214, and JNU-215) with linearly bridged bipyrazoles as organic linkers. These crystalline Ni8-MOFs can maintain their structural integrity in 7 M NaOH at 100 °C for 24 h. Experimental studies reveal that linker engineering by tuning the electron-accepting capacity of the pyrazole-bridging units renders these Ni8-MOFs with significantly improved charge separation and transfer efficiency under visible-light irradiation. Among them, the one containing a benzoselenadiazole unit (JNU-214) exhibits the best photocatalytic performance in the aerobic oxidation of benzylamines with a conversion rate of 99% in 24 h. Recycling experiments were carried out to confirm the stability and reusability of JNU-214 as a robust heterogeneous catalyst. Significantly, the systematic modulation of the electron-accepting capacity of the bridging units in donor-acceptor-donor MOFs provides a new pathway to develop viable noble-metal-free heterogeneous photocatalysts for aerobic oxidation reactions.
RESUMO
The unstable flow of a shaft tubular pump device (STPD) leads to energy loss, thereby reducing its efficiency. The aim of this study is to investigate the distribution pattern of energy loss in STPDs. This paper reveals that the two components with the highest proportion of energy loss are the impeller and the outlet passage. Furthermore, turbulent entropy production is the primary cause of energy loss. Due to the wall effect, the energy loss in the impeller mainly occurs near the hub and shroud. Additionally, the presence of a tip leakage vortex near the shroud further contributes to the energy loss in the region near the shroud. This results in the energy loss proportion exceeding 40% in the region with a volume fraction of 14% near the shroud. In the outlet passage, the energy loss mainly occurs in the front region, with a volume fraction of 30%, and the energy loss in this part accounts for more than 65%. Finally, this study reveals the locations of the vortex in the STPD under different flow-rate conditions, and when the distribution of energy loss is visualized, it is found that the energy loss occurs high in the vortex regions.
RESUMO
Dam numerical simulation is an important method to research the dam structural behavior, but it often takes a lot of time for calculation when facing problems that require many simulations, such as structural parameter back analysis. The surrogate model is widely used as a technology to reduce computational cost. Although various methods have been widely investigated, there are still problems in designing the surrogate model's optimal Design of Experiments (DoE). In addition, most of the current DoE focuses on establishing a single-output problem. Designing a reasonable DoE for high-dimensional outputs is also a problem that needs to be solved. Based on the above issues, this research proposes a sequential surrogate model based on the radial basis function model (RBFM) with multi-outputs adaptive sampling. The benchmark function demonstrates the applicability of the proposed method to single-input & multi-outputs and multi-inputs & multi-outputs problems. Then, this method is applied to establishing a surrogate model for dam numerical simulation with multi-outputs. The result demonstrates that the proposed technique can be sampled adaptively and samples can be targeted based on the function form of the surrogate model, which significantly reduces the required sampling and calculation cost.
RESUMO
Two metallofullerene frameworks (MFFs) constructed from a penta-shell Keplerate cuprofullerene chloride, C60 @Cu24 @Cl44 @Cu12 @Cl12 , have been successfully prepared via a C60 -templated symmetry-driven strategy. The icosahedral cuprofullerene chloride is assembled on a C60 molecule through [η2 -(C=C)]-CuI and CuI -Cl coordination bonds, resulting in the penta-shell Keplerate with the C60 core canopied by 24 Cu, 44 Cl, 12 Cu and 12 Cl atoms that fulfill the tic@rco@oae@ico@ico penta-shell polyhedral configuration. By sharing the outmost-shell Cl atoms, the cuprofullerene chlorides are connected into 2D or 3D (snf net) frameworks. TD-DFT calculations reveal that the charge transfer from the outmost CuI and Cl to C60 core is responsible for their light absorption expansion to near-infrared region, implying anionic halogenation may be an effective strategy to tune the light absorption properties of metallofullerene materials.
RESUMO
Designing porous materials for C2 H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2 H2 sorption and C2 H2 /CO2 separation in two isostructural NbO metal-organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA. The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2 H2 , leading to irreversible structural collapse and loss of C2 H2 /CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2 H2 to form specific π-complexation, contributing to high C2 H2 capture (28.7â cm3 g-1 at 0.01â bar and 153â cm3 g-1 at 1â bar). The reusable Pt/Cu-PDA efficiently separates C2 H2 from C2 H2 /CO2 mixtures with satisfying selectivity and C2 H2 capacity (37â min g-1 ). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.
RESUMO
The heart is a vital organ in the human body. Research and treatment for the heart have made remarkable progress, and the functional mechanisms of the heart have been simulated and rendered through the construction of relevant models. The current methods for rendering cardiac functional mechanisms only consider one type of modality, which means they cannot show how different types of modality, such as physical and physiological, work together. To realistically represent the three-dimensional synergetic biological modality of the heart, this paper proposes a WebGL-based cardiac synergetic modality rendering framework to visualize the cardiac physical volume data and present synergetic correspondence rendering of the cardiac electrophysiological modality. By constructing the biological detailed interactive histogram, users can implement local details rendering for the heart, which could reveal the cardiac biology details more clearly. We also present cardiac physical-physiological correlation visualization to explore cardiac biological association characteristics. Experimental results show that the proposed framework can provide favorable cardiac biological detailed synergetic modality rendering results in terms of both effectiveness and efficiency. Compared with existing methods, the framework can facilitate the study of the internal mechanism of the heart and subsequently deduce the process of initiation, development, and transformation from a healthy heart to an ill one, and thereby improve the diagnosis and treatment of cardiac disorders.
RESUMO
Porous metal-organic framework (MOF) liquids with permanent porosity, good fluidity, and fine dispersion attract broad attention in catalysis, transportation, gas storage, and chemical separations. Yet, the design and synthesis of porous MOF liquids for drug delivery remain less explored. Herein, a simple and general strategy is reported to prepare ZIF-91 porous liquid (ZIF-91-PL) via surface modification and ion exchange. The cationic nature of ZIF-91-PL not only renders it antibacterial but also with high curcumin loading capacity and sustained release. More importantly, the acrylate group on the grafted side chain of ZIF-91-PL makes it feasible to crosslink with modified gelatin through light curing, and the obtained hydrogel shows a significantly improved healing effect on the wound of diabetes. This work demonstrates for the first time, a MOF-based porous liquid for drug delivery, and the further fabrication of composite hydrogel may have potential applications in biomedical science.
Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Porosidade , Estruturas Metalorgânicas/química , Bandagens , Cicatrização , Hidrogéis/farmacologiaRESUMO
Studies of optical properties of doped nanocrystals of tungsten trioxide can elucidate new information about the material. A novel molecule-enhanced photoluminescence (PL) of potassium-doped tungsten trioxide (K x WO) was explored in the presence of different gases to understand charge transfer between molecules and K x WO on the properties of the material. We performed Raman spectroscopy and PL experiments in the presence of gaseous acetone or ethanol mixed with other gases (N2 and O2). PL at 630 nm from K x WO was observed and further enhanced when the sample was continuously irradiated with a 532 nm CW laser in acetone. A mechanism of strong emission of the PL induced by the charge transfer between the acetone and the K x WO is proposed.
RESUMO
TiO2 has been extensively studied in many fields including photocatalysis, electrochemistry, optics, etc. Understanding the mechanism of the anatase-rutile phase transition (ART) process is critical for the design of TiO2-based high-activity photocatalysts and tuning its properties for other applications. In this work, the ART process using individual anatase micro-particles with a large percentage of (001) facets was monitored and studied. Phase concentration evolution obtained via Raman microscopy was correlated with the morphological evolution observed in scanning electron microscope (SEM) images. The ART of anatase microcrystals is dominated by surface nucleation and growth, but the ART processes of individual anatase particles are distinctive and depend on the various rutile nucleation sites. Two types of transformation pathways are observed. In one type of ART pathway, the rutile phase nucleated at a corner of an anatase microcrystal and grew in one direction along the edge of the crystal firstly followed by propagation over the rest of the microcrystal in the orthogonal direction on the surface and to the bulk of the crystal. The kinetics of the ART follows the first-order model with two distinct rate constants. The fast reaction rate is from the surface nucleation and growth, and the slow rate is from the bulk nucleation and growth. In the other type of ART pathway, multiple rutile nucleation sites formed simultaneously on different edges and corners of the microcrystal. The rutile phase spread over the whole crystal from these nucleation sites with a small contribution of bulk nucleation. Our study on the ART of individual micro-sized crystals bridges the material gap between bulk crystals and nano-sized TiO2 particles. The anatase/rutile co-existing particle will provide a perfect platform to study the synergistic effect between the anatase phase and the rutile phase in their catalytic performances.
RESUMO
The efficient separation of acetylene (C2H2) from its mixture with carbon dioxide (CO2) remains a challenging industrial process due to their close molecular sizes/shapes and similar physical properties. Herein, we report a microporous metal-organic framework (JNU-4) with square-planar mononuclear copper(ii) centers as nodes and tetrahedral organic linkers as spacers, allowing for two accessible binding sites per metal center for C2H2 molecules. Consequently, JNU-4 exhibits excellent C2H2 adsorption capacity, particularly at 298 K and 0.5 bar (200 cm3 g-1). Detailed computational studies confirm that C2H2 molecules are indeed predominantly located in close proximity to the square-planar copper centers on both sides. Breakthrough experiments demonstrate that JNU-4 is capable of efficiently separating C2H2 from a 50 : 50 C2H2/CO2 mixture over a broad range of flow rates, affording by far the largest C2H2 capture capacity (160 cm3 g-1) and fuel-grade C2H2 production (105 cm3 g-1, ≥98% purity) upon desorption. Simply by maximizing accessible open metal sites on mononuclear metal centers, this work presents a promising strategy to improve the C2H2 adsorption capacity and address the challenging C2H2/CO2 separation.
RESUMO
Background: Carbon monoxide (CO) is gaining increased attention in air pollution-induced arrhythmias. The severe cardiotoxic consequences of CO urgently require effective pharmacotherapy to treat it. However, existing evidence demonstrates that CO can induce arrhythmias by directly affecting multiple ion channels, which is a pathway distinct from heart ischemia and has received less concern in clinical treatment. Objective: To evaluate the efficacy of some common clinical antiarrhythmic drugs for CO-induced arrhythmias, and to propose a potential pharmacotherapy for CO-induced arrhythmias through the virtual pathological cell and tissue models. Methods: Two pathological models describing CO effects on healthy and failing hearts were constructed as control baseline models. After this, we first assessed the efficacy of some common antiarrhythmic drugs like ranolazine, amiodarone, nifedipine, etc., by incorporating their ion channel-level effects into the cell model. Cellular biomarkers like action potential duration and tissue-level biomarkers such as the QT interval from pseudo-ECGs were obtained to assess the drug efficacy. In addition, we also evaluated multiple specific I Kr activators in a similar way to multi-channel blocking drugs, as the I Kr activator showed great potency in dealing with CO-induced pathological changes. Results: Simulation results showed that the tested seven antiarrhythmic drugs failed to rescue the heart from CO-induced arrhythmias in terms of the action potential and the ECG manifestation. Some of them even worsened the condition of arrhythmogenesis. In contrast, I Kr activators like HW-0168 effectively alleviated the proarrhythmic effects of CO. Conclusion: Current antiarrhythmic drugs including the ranolazine suggested in previous studies did not achieve therapeutic effects for the cardiotoxicity of CO, and we showed that the specific I Kr activator is a promising pharmacotherapy for the treatment of CO-induced arrhythmias.
RESUMO
The efficient separation of C2H2/CO2 is challenging and energy intensive due to their similar molecular shapes and kinetic diameters. Here we report an ato-topology metal-organic framework (JNU-7a) with a specific surface area of 2046 cm2 g-1 and open-metal-site density of 2.05 mmol cm-3, resulting in a large C2H2 adsorption capacity of (176 cm3 g-1) and high C2H2/CO2 adsorption selectivity (6.2).