Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Clin Invest ; 129(5): 1984-1999, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830875

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and deadly disease with a poor prognosis and few treatment options. Pathological remodeling of the extracellular matrix (ECM) by myofibroblasts is a key factor that drives disease pathogenesis, although the underlying mechanisms remain unknown. Alternative polyadenylation (APA) has recently been shown to play a major role in cellular responses to stress by driving the expression of fibrotic factors and ECMs through altering microRNA sensitivity, but a connection to IPF has not been established. Here, we demonstrate that CFIm25, a global regulator of APA, is down-regulated in the lungs of patients with IPF and mice with pulmonary fibrosis, with its expression selectively reduced in alpha-smooth muscle actin (α-SMA) positive fibroblasts. Following the knockdown of CFIm25 in normal human lung fibroblasts, we identified 808 genes with shortened 3'UTRs, including those involved in the transforming growth factor-ß signaling pathway, the Wnt signaling pathway, and cancer pathways. The expression of key pro-fibrotic factors can be suppressed by CFIm25 overexpression in IPF fibroblasts. Finally, we demonstrate that deletion of CFIm25 in fibroblasts or myofibroblast precursors using either the Col1a1 or the Foxd1 promoter enhances pulmonary fibrosis after bleomycin exposure in mice. Taken together, our results identified CFIm25 down-regulation as a novel mechanism to elevate pro-fibrotic gene expression in pulmonary fibrosis.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Poliadenilação , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/fisiopatologia , Regiões 3' não Traduzidas , Actinas/metabolismo , Adulto , Idoso , Animais , Bleomicina/farmacologia , Progressão da Doença , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
PLoS One ; 12(10): e0186615, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29045477

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal disease. Histone deacetylase 6 (HDAC6) alters function and fate of various proteins via deacetylation of lysine residues, and is implicated in TGF-ß1-induced EMT (epithelial-mesenchymal transition). However, the role of HDAC6 in pulmonary fibrosis is unknown. METHODS: HDAC6 expression in IPF and control lungs was assessed by quantitative real-time PCR (qRT-PCR) and immunoblots. Lung fibroblasts were treated with TGF-ß1 ± HDAC6 inhibitors (Tubacin, Tubastatin, ACY1215, or MC1568), and fibrotic markers such as type I collagen were assessed using qRT-PCR and immunoblots. Mice were treated with bleomycin (oropharyngeal aspiration; single dose) ± Tubastatin (intraperitoneally injection; daily for 21 days), and lung collagen expression was gauged using immunoblots and trichrome staining. In a separate experiment, HDAC6 wild-type (WT) and knockout (KO) mice were administered bleomycin, and lungs were evaluated in the same manner. RESULTS: HDAC6 expression was deregulated in IPF lungs. Among the HDAC6 inhibitors tested, only Tubastatin significantly repressed TGF-ß1-induced expression of type-1 collagen in lung fibroblasts, and this finding was coupled with decreased Akt phosphorylation and increased Akt-PHLPP (PH domain and Leucine rich repeat Protein Phosphatase) association. Tubastatin repressed TGF-ß1-induced S6K phosphorylation, HIF-1α expression, and VEGF expression. Tubastatin also repressed TGF-ß1-induced inhibition of LC3B-II (a marker of autophagosome formation). In bleomycin-treated mouse lungs, HDAC6 expression was increased, and Tubastatin repressed type-1 collagen expression. However, in HDAC6 KO mice, bleomycin-induced type-1 collagen expression was not repressed compared to WT mice. Knockdown of HDAC6, as well as HDAC10, another potential Tubastatin target, did not inhibit TGF-ß1-induced collagen expression in lung fibroblasts. CONCLUSIONS: HDAC6 expression is altered during lung fibrogenesis. Tubastatin represses TGF-ß1-induced collagen expression, by diminishing Akt phosphorylation and regulating downstream targets such as HIF-1α-VEGF axis and autophagy. Tubastatin-treated WT mice are protected against bleomycin-induced fibrosis, but HDAC6 KO mice are not. Our data suggest that Tubastatin ameliorates pulmonary fibrosis, by targeting the TGFß-PI3K-Akt pathway, likely via an HDAC6-independent mechanism.


Assuntos
Ácidos Hidroxâmicos/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Indóis/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Bleomicina , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Tubulina (Proteína)/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Br J Pharmacol ; 174(19): 3284-3301, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688167

RESUMO

BACKGROUND AND PURPOSE: Group III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronan-mediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACH: Explanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTS: In patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONS: Taken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis.


Assuntos
Ácido Hialurônico/antagonistas & inibidores , Himecromona/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Fibrose Pulmonar/tratamento farmacológico , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/citologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Serina Endopeptidases/metabolismo , Remodelação Vascular/efeitos dos fármacos
4.
FASEB J ; 31(11): 4745-4758, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28701304

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a deadly chronic lung disease. Extracellular accumulation of adenosine and subsequent activation of the ADORA2B receptor play important roles in regulating inflammation and fibrosis in IPF. Additionally, alternatively activated macrophages (AAMs) expressing ADORA2B have been implicated in mediating adenosine's effects in IPF. Although hypoxic conditions are present in IPF, hypoxia's role as a direct modulator of macrophage phenotype and identification of factors that regulate ADORA2B expression on AAMs in IPF is not well understood. In this study, an experimental mouse model of pulmonary fibrosis and lung samples from patients with IPF were used to examine the effects and interactions of macrophage differentiation and hypoxia on fibrosis. We demonstrate that hypoxia-inducible factor 1-α (HIF1A) inhibition in late stages of bleomycin-induced injury attenuates pulmonary fibrosis in association, with reductions in ADORA2B expression in AAMs. Additionally, ADORA2B deletion or pharmacological antagonism along with HIF1A inhibition disrupts AAM differentiation and subsequent IL-6 production in cultured macrophages. These findings suggest that hypoxia, through HIF1A, contributes to the development and progression of pulmonary fibrosis through its regulation of ADORA2B expression on AAMs, cell differentiation, and production of profibrotic mediators. These studies support a potential role for HIF1A or ADORA2B antagonists in the treatment of IPF.-Philip, K., Mills, T. W., Davies, J., Chen, N.-Y., Karmouty-Quintana, H., Luo, F., Molina, J. G., Amione-Guerra, J., Sinha, N., Guha, A., Eltzschig, H. K., Blackburn, M. R. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos Alveolares , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Receptor A2B de Adenosina/biossíntese , Regulação para Cima , Adulto , Idoso , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Receptor A2B de Adenosina/genética
5.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L936-L944, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28336812

RESUMO

Myofibroblasts are important mediators of fibrogenesis; thus blocking fibroblast-to-myofibroblast differentiation (FMD) may be an effective strategy to treat pulmonary fibrosis (PF). Previously, we reported that histone deacetylase 4 (HDAC4) activity is necessary for transforming growth factor-ß1 (TGF-ß1)-induced human lung FMD. Here, we show that TGF-ß1 increases NADPH oxidase 4 (NOX4) mRNA and protein expression in normal human lung fibroblasts (NHLFs) and causes nuclear export of HDAC4. Application of the NOX family inhibitor diphenyleneiodonium chloride reduces TGF-ß1-induced HDAC4 nuclear export, expression of the myofibroblast marker α-smooth muscle actin (α-SMA), and α-SMA fiber formation. Inhibition of HDAC4 nucleus-to-cytoplasm translocation using leptomycin B (LMB) had little effect on α-SMA expression but blocked α-SMA fiber formation. A coimmunoprecipitation assay showed that HDAC4 associates with α-SMA. Moreover, LMB abolishes TGF-ß1-induced α-SMA fiber formation and cell contraction. Relevant to human pulmonary fibrosis, idiopathic PF specimens showed significantly higher NOX4 RNA expression and scant HDAC4 staining within nuclei of fibroblast foci myofibroblasts. Taken together, these results indicate that reactive oxygen species promote TGF-ß1-mediated myofibroblast differentiation and HDAC4 nuclear export. The physical association of HDAC4 with α-SMA suggests that HDAC4 has a role in regulating the α-SMA cytoskeleton arrangement.


Assuntos
Núcleo Celular/metabolismo , Fibroblastos/enzimologia , Histona Desacetilases/metabolismo , Pulmão/citologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Actinas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Biópsia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/patologia , Miofibroblastos/patologia , NADPH Oxidase 4 , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos
6.
J Exp Med ; 214(1): 107-123, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27994068

RESUMO

Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell-driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency-mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota-inosine-A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction.


Assuntos
Autoimunidade , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Receptor A2A de Adenosina/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Feminino , Inosina/farmacologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/citologia , Células Th2/citologia
7.
Circulation ; 134(5): 405-21, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27482003

RESUMO

BACKGROUND: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. METHODS: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. RESULTS: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. CONCLUSIONS: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.


Assuntos
Proteínas Quinases Ativadas por AMP/sangue , Adaptação Fisiológica/fisiologia , Doença da Altitude/sangue , Eritrócitos/metabolismo , Receptor A2B de Adenosina/sangue , 2,3-Difosfoglicerato/sangue , 5'-Nucleotidase/sangue , 5'-Nucleotidase/deficiência , Lesão Pulmonar Aguda/fisiopatologia , Adenosina/sangue , Adulto , Doença da Altitude/enzimologia , Doença da Altitude/fisiopatologia , Animais , Bisfosfoglicerato Mutase/sangue , Ativação Enzimática , Proteínas Ligadas por GPI/sangue , Humanos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/sangue , Fosforilação , Processamento de Proteína Pós-Traducional
8.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L238-54, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317687

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-ß activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Hipertensão Pulmonar/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos Alveolares/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Regulação para Baixo , Expressão Gênica , Humanos , Hipertensão Pulmonar/etiologia , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/fisiopatologia , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Isoformas de Proteínas , Interferência de RNA
9.
Respir Res ; 17: 4, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753996

RESUMO

BACKGROUND: BMAL1 is a transcriptional activator of the molecular clock feedback network. Besides its role in generating circadian rhythms, it has also been shown to be involved in the modulation of cell proliferation, autophagy and cancer cell invasion. However, the role of BMAL1 in pulmonary fibrogenesis is still largely unknown. In this study, we investigated the crosstalk between BMAL1 and the signaling transduction and cellular activities of TGF-ß1, a key player in lung fibrogenesis. METHODS: Lungs from wild type and TGF-ß1-adenovirus-infected mice were harvested and homogenized for isolation of RNA and protein. RT-PCR and Western Blotting were employed to measure the expression level of clock genes and TGF-ß1-induced downstream target genes. siRNA against human BMAL1 gene was transfected by using lipofectamine RNAiMAX to knockdown the endogenous BMAL1 in both lung epithelial cells and fibroblasts. RESULTS: Our results showed that TGF-ß1 is able to up-regulate BMAL1 expression in both lung epithelial cells and normal lung fibroblasts. In animal models of pulmonary fibrosis, BMAL1 expression was also significantly higher in adenovirus-TGF-ß1-infected mice than in the control group. Interestingly, BMAL1 was mostly found in a deacetylated form in the presence of TGF-ß1. Importantly, siRNA-mediated knockdown of BMAL1 significantly attenuated the canonical TGF-ß1 signaling pathway and altered TGF-ß1-induced epithelial-mesenchymal transition and MMP9 production in lung epithelial cells. In addition, BMAL1 knockdown inhibited the fibroblast to myofibroblast differentiation of normal human lung fibroblasts. CONCLUSIONS: Our results indicate that activation of TGF-ß1 promotes the transcriptional induction of BMAL1. Furthermore, BMAL1 is required for the TGF-ß1-induced signaling transduction and pro-fibrotic activities in the lung.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1
10.
Am J Respir Cell Mol Biol ; 54(4): 574-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26414702

RESUMO

Group III pulmonary hypertension (PH) is a highly prevalent and deadly lung disorder with limited treatment options other than transplantation. Group III PH affects patients with ongoing chronic lung injury, such as idiopathic pulmonary fibrosis (IPF). Between 30 and 40% of patients with IPF are diagnosed with PH. The diagnosis of PH has devastating consequences to these patients, leading to increased morbidity and mortality, yet the molecular mechanisms involved in the development of PH in patients with chronic lung disease remain elusive. Our hypothesis was that the hypoxic-adenosinergic system is enhanced in patients with group III PH compared with patients with IPF with no PH. Explanted lung tissue was analyzed for markers of the hypoxic-adenosine axis, including expression levels of hypoxia-inducible factor (HIF)-1A, adenosine A2B receptor, CD73, and equilibrative nucleotide transporter-1. In addition, we assessed whether altered mitochondrial metabolism was present in these samples. Increased expression of HIF-1A was observed in tissues from patients with group III PH. These changes were consistent with increased evidence of adenosine accumulation in group III PH. A novel observation of our study was of evidence suggesting altered mitochondrial metabolism in lung tissue from group III PH leading to increased succinate levels that are able to further stabilize HIF-1A. Our data demonstrate that the hypoxic-adenosine axis is up-regulated in group III PH and that subsequent succinate accumulation may play a part in the development of group III PH.


Assuntos
Adenosina/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Idoso , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Fibrose Pulmonar/metabolismo , Remodelação Vascular
11.
FASEB J ; 30(2): 874-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527068

RESUMO

Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.


Assuntos
Adenosina/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Fibrose Pulmonar Idiopática/patologia , Camundongos
12.
Aging Cell ; 14(5): 774-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059457

RESUMO

Aging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age-dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle-aged mice compared to younger animals. More importantly, older mice expose to lung injury are characterized by deficient autophagic response and reduced selective targeting of mitochondria for autophagy (mitophagy). Fibroblast to myofibroblast differentiation (FMD) is an important feature of pulmonary fibrosis in which the profibrotic cytokine TGFß1 plays a pivotal role. Promotion of autophagy is necessary and sufficient to maintain normal lung fibroblasts' fate. On the contrary, FMD mediated by TGFß1 is characterized by reduced autophagy flux, altered mitophagy, and defects in mitochondrial function. In accord with these findings, PINK1 expression appeared to be reduced in fibrotic lung tissue from bleomycin and a TGFß1-adenoviral model of lung fibrosis. PINK1 expression is also reduced in the aging murine lung and biopsies from IPF patients compared to controls. Furthermore, deficient PINK1 promotes a profibrotic environment. Collectively, this study indicates that an age-related decline in autophagy and mitophagy responses to lung injury may contribute to the promotion and/or perpetuation of pulmonary fibrosis. We propose that promotion of autophagy and mitochondrial quality control may offer an intervention against age-related fibrotic diseases.


Assuntos
Envelhecimento , Autofagia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Oxidativo , Fibrose Pulmonar/genética , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/genética
13.
FASEB J ; 29(1): 50-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318478

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.


Assuntos
Hipertensão Pulmonar/etiologia , Fibrose Pulmonar Idiopática/etiologia , Receptor A2B de Adenosina/deficiência , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/fisiopatologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/fisiologia , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/fisiologia
14.
Am J Respir Crit Care Med ; 190(12): 1402-12, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25358054

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with few therapeutic options. Apoptosis of alveolar epithelial cells, followed by abnormal tissue repair characterized by hyperplastic epithelial cell formation, is a pathogenic process that contributes to the progression of pulmonary fibrosis. However, the signaling pathways responsible for increased proliferation of epithelial cells remain poorly understood. OBJECTIVES: To investigate the role of deoxycytidine kinase (DCK), an important enzyme for the salvage of deoxynucleotides, in the progression of pulmonary fibrosis. METHODS: DCK expression was examined in the lungs of patients with IPF and mice exposed to bleomycin. The regulation of DCK expression by hypoxia was studied in vitro and the importance of DCK in experimental pulmonary fibrosis was examined using a DCK inhibitor and alveolar epithelial cell-specific knockout mice. MEASUREMENTS AND MAIN RESULTS: DCK was elevated in hyperplastic alveolar epithelial cells of patients with IPF and in mice exposed to bleomycin. Increased DCK was localized to cells associated with hypoxia, and hypoxia directly induced DCK in alveolar epithelial cells in vitro. Hypoxia-induced DCK expression was abolished by silencing hypoxia-inducible factor 1α and treatment of bleomycin-exposed mice with a DCK inhibitor attenuated pulmonary fibrosis in association with decreased epithelial cell proliferation. Furthermore, DCK expression, and proliferation of epithelial cells and pulmonary fibrosis was attenuated in mice with conditional deletion of hypoxia-inducible factor 1α in the alveolar epithelium. CONCLUSIONS: Our findings suggest that the induction of DCK after hypoxia plays a role in the progression of pulmonary fibrosis by contributing to alveolar epithelial cell proliferation.


Assuntos
Desoxicitidina Quinase/fisiologia , Hipóxia/complicações , Fibrose Pulmonar Idiopática/etiologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Humanos , Hipóxia/enzimologia , Hipóxia/fisiopatologia , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/enzimologia
15.
Physiol Rep ; 2(9)2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25263205

RESUMO

Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73(-/-), and Adora2B(-/-) mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73-mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73(-/-) and Adora2B(-/-) mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B-dependent regulation of occludin.

16.
J Immunol ; 193(7): 3755-68, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172494

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with progressive fibrosis and death within 2-3 y of diagnosis. IPF incidence and prevalence rates are increasing annually with few effective treatments available. Inhibition of IL-6 results in the attenuation of pulmonary fibrosis in mice. It is unclear whether this is due to blockade of classical signaling, mediated by membrane-bound IL-6Rα, or trans signaling, mediated by soluble IL-6Rα (sIL-6Rα). Our study assessed the role of sIL-6Rα in IPF. We demonstrated elevations of sIL-6Rα in IPF patients and in mice during the onset and progression of fibrosis. We demonstrated that protease-mediated cleavage from lung macrophages was important in production of sIL-6Rα. In vivo neutralization of sIL-6Rα attenuated pulmonary fibrosis in mice as seen by reductions in myofibroblasts, fibronectin, and collagen in the lung. In vitro activation of IL-6 trans signaling enhanced fibroblast proliferation and extracellular matrix protein production, effects relevant in the progression of pulmonary fibrosis. Taken together, these findings demonstrate that the production of sIL-6Rα from macrophages in the diseased lung contributes to IL-6 trans signaling that in turn influences events crucial in pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Interleucina-6/imunologia , Macrófagos Alveolares/imunologia , Fibrose Pulmonar/imunologia , Receptores de Interleucina-6/imunologia , Transdução de Sinais/imunologia , Animais , Colágeno/imunologia , Modelos Animais de Doenças , Feminino , Fibronectinas/imunologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/terapia , Interleucina-6/genética , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Miofibroblastos/imunologia , Miofibroblastos/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
17.
Respir Res ; 15: 51, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24762191

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease of insidious onset, and is responsible for up to 30,000 deaths per year in the U.S. Excessive production of extracellular matrix by myofibroblasts has been shown to be an important pathological feature in IPF. TGF-ß1 is expressed in fibrotic lung and promotes fibroblast to myofibroblast differentiation (FMD) as well as matrix deposition. METHODS: To identify the mechanism of Arsenic trioxide's (ATO)'s anti-fibrotic effect in vitro, normal human lung fibroblasts (NHLFs) were treated with ATO for 24 hours and were then exposed to TGF-ß1 (1 ng/ml) before harvesting at multiple time points. To investigate whether ATO is able to alleviate lung fibrosis in vivo, C57BL/6 mice were administered bleomycin by oropharyngeal aspiration and ATO was injected intraperitoneally daily for 14 days. Quantitative real-time PCR, western blotting, and immunofluorescent staining were used to assess the expression of fibrotic markers such as α-smooth muscle actin (α-SMA) and α-1 type I collagen. RESULTS: Treatment of NHLFs with ATO at very low concentrations (10-20nM) inhibits TGF-ß1-induced α-smooth muscle actin (α-SMA) and α-1 type I collagen mRNA and protein expression. ATO also diminishes the TGF-ß1-mediated contractile response in NHLFs. ATO's down-regulation of profibrotic molecules is associated with inhibition of Akt, as well as Smad2/Smad3 phosphorylation. TGF-ß1-induced H2O2 and NOX-4 mRNA expression are also blocked by ATO. ATO-mediated reduction in Smad3 phosphorylation correlated with a reduction of promyelocytic leukemia (PML) nuclear bodies and PML protein expression. PML-/- mouse embryonic fibroblasts (MEFs) showed decreased fibronectin and PAI-1 expression in response to TGF-ß1. Daily intraperitoneal injection of ATO (1 mg/kg) in C57BL/6 mice inhibits bleomycin induced lung α-1 type I collagen mRNA and protein expression. CONCLUSIONS: In summary, these data indicate that low concentrations of ATO inhibit TGF-ß1-induced fibroblast to myofibroblast differentiation and decreases bleomycin induced pulmonary fibrosis.


Assuntos
Arsenicais/farmacologia , Bleomicina/toxicidade , Fibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Óxidos/farmacologia , Fibrose Pulmonar/prevenção & controle , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Trióxido de Arsênio , Arsenicais/uso terapêutico , Bleomicina/antagonistas & inibidores , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/fisiologia , Células Cultivadas , Fibroblastos/patologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Óxidos/uso terapêutico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/farmacologia
18.
Virol J ; 10: 152, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23680002

RESUMO

We have previously shown that disruption of promyelocytic leukemia nuclear bodies (PML NBs) is sufficient to activate the EBV lytic cycle thus making infected cells susceptible to ganciclovir (GCV) mediated killing in vitro. Here we show that co-administration of GCV and arsenic trioxide (ATO), a PML NB disruptor, reduces tumor volume in a xenograft model of nasopharyngeal carcinoma utilizing CNE1 cells. When administered at pharmacologic levels, both GCV and ATO reduced tumor growth while co-treatment with GCV + ATO resulted in a diminution of tumor volume. Treatment with GCV or ATO individually resulted in an increased number of apoptotic cells while co-treatment with GCV + ATO synergistically induced apoptosis. Treatment with ATO or co-treatment with GCV + ATO resulted in expression of EBV lytic proteins. These data suggest that co-treatment with GCV + ATO may provide an effective treatment for nasopharyngeal carcinoma patients.


Assuntos
Antineoplásicos/administração & dosagem , Antivirais/administração & dosagem , Arsenicais/administração & dosagem , Ganciclovir/administração & dosagem , Xenoenxertos/efeitos dos fármacos , Neoplasias Nasofaríngeas/tratamento farmacológico , Óxidos/administração & dosagem , Animais , Trióxido de Arsênio , Carcinoma , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Humanos , Camundongos , Carcinoma Nasofaríngeo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA