Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(12): 7429-7445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37000354

RESUMO

Medulloblastoma (MB) is a malignant tumor of the cerebellum that occurs in children and infants. Abnormal neuronal differentiation can lead to brain tumors, and topoisomerase IIß (Top IIß) plays an important role in neuronal differentiation. The aim of this study was to investigate the molecular mechanism of 13-cis retinoic acid (13-cis RA) promoting the expression of Top IIß and inducing neuronal differentiation in human MB Daoy cells. The results showed that 13-cis RA inhibited the cell proliferation and induced cell cycle arrest in G0/G1 phase. The cells differentiated into a neuronal phenotype, with high expression of the neuronal marker microtubule-associated protein 2 (MAP2) and abundant Top IIß, and obvious neurite growth. Chromatin immunoprecipitation (ChIP) assay showed that histone H3 lysine 27 tri-methylation (H3K27me3) modification in Top IIß promoter decreased after 13-cis RA-induced cell differentiation, while jumonji domain-containing protein 3 (JMJD3) binding in Top IIß promoter increased. These results suggest that H3K27me3 and JMJD3 can regulate the expression of Top IIß gene, which is related to inducing neural differentiation. Our results provide new insights into understanding the regulatory mechanisms of Top IIß during neuronal differentiation and imply the potential application of 13-cis RA in the clinical treatment of MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Histonas/genética , Histonas/metabolismo , Isotretinoína/metabolismo , Meduloblastoma/genética , Meduloblastoma/patologia , Epigênese Genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Diferenciação Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo
2.
Oxid Med Cell Longev ; 2021: 5564884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859778

RESUMO

Vascular smooth muscle cell (VSMC) apoptosis is a major defining feature of abdominal aortic aneurysm (AAA) and mainly caused by inflammatory cell infiltration. Smooth muscle (SM) 22α prevents AAA formation through suppressing NF-κB activation. However, the role of SM22α in VSMC apoptosis is controversial. Here, we identified that SM22α loss contributed to apoptosis of VSMCs via activation of macrophages. Firstly, deficiency of SM22α enhanced the interaction of VSMCs with macrophages. Macrophages were retained and activated by Sm22α -/- VSMCs via upregulating VCAM-1 expression. The ratio of apoptosis was increased by 1.62-fold in VSMCs treated with the conditional media (CM) from activated RAW264.7 cells, compared to that of the control CM (P < 0.01), and apoptosis of Sm22α -/- VSMCs was higher than that of WT VSMCs (P < 0.001). Next, circRasGEF1B from activated macrophages was delivered into VSMCs promoting ZFP36 expression via stabilization of ZFP36 mRNA. Importantly, circRasGEF1B, as a scaffold, guided ZFP36 to preferentially bind to and decay Bcl-2 mRNA in a sequence-specific manner and triggered apoptosis of VSMCs, especially in Sm22α -/- VSMCs. These findings reveal a novel mechanism by which the circRasGEF1B-ZFP36 axis mediates macrophage-induced VSMC apoptosis via decay of Bcl-2 mRNA, whereas Sm22α -/- VSMCs have a higher sensitivity to apoptosis.


Assuntos
Macrófagos/citologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/deficiência , Proteínas Musculares/deficiência , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , RNA Circular/metabolismo , Animais , Apoptose/fisiologia , Comunicação Celular/fisiologia , Técnicas de Reprogramação Celular , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tristetraprolina/biossíntese , Tristetraprolina/genética , Tristetraprolina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA