Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Tech (Berl) ; 62(2): 139-148, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375841

RESUMO

Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.


Assuntos
Biomimética/instrumentação , Análise de Falha de Equipamento/instrumentação , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Coração/fisiopatologia , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Insuficiência Cardíaca/etiologia , Humanos
2.
Artif Organs ; 40(10): 981-991, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26582749

RESUMO

A mock heart circulation loop (MHCL) is a hydraulic model simulating the human circulatory system. It allows in vitro investigations of the interaction between cardiac assist devices and the human circulatory system. In this study, a preload sensitive MHCL, the MHCLAUTO , was developed to investigate the interaction between the left ventricle and left ventricular assist devices (LVADs). The Frank-Starling mechanism was modeled by regulating the stroke volume (SV) based on the measured mean diastolic left atrial pressure (MLAPdiast ). The baroreflex autoregulation mechanism was implemented to maintain a constant mean aortic pressure (MAP) by varying ventricular contractility (Emax ), heart rate (HR), afterload/systemic vascular resistance (SVR) and unstressed venous volume (UVV). The DP3 blood pump (Medos Medizintechnik GmbH) was used to simulate the LVAD. Characteristic parameters were measured in pathological conditions both with and without LVAD to assess the hemodynamic effect of LVAD on the MHCLAUTO . The results obtained from the MHCLAUTO show a high correlation to literature data. The study demonstrates the possibility of using the MHCLAUTO as a research tool to better understand the physiological interactions between cardiac implants and human circulation.


Assuntos
Pressão Atrial , Barorreflexo , Coração Auxiliar , Volume Sistólico , Simulação por Computador , Hemodinâmica , Humanos , Modelos Cardiovasculares , Desenho de Prótese , Função Ventricular Esquerda
3.
Artif Organs ; 40(2): 207-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25997837

RESUMO

Spatially resolved measurement of blood flow is of great interest in the development of artificial blood-carrying devices such as blood pumps, heart valve prostheses, and oxygenators. Particle image velocimetry (PIV) is able to measure instantaneous velocity fields in a plane with high accuracy and is being used more frequently for the development of such devices. However, as this measurement technique is based on optical access, blood flow at physiological hematocrit values is difficult to measure due to its low transparency and multiscattering properties. So far, only very small dimensions (in the range of 400 µm) can be measured using PIV. A suspension of ghost cells (GCs) offers a higher optical transparency than blood while having a similar rheological behavior. In this study, a procedure for the production of GC suspensions containing a very low intracellular hemoglobin concentration is presented. With the help of multiple rounds of controlled cell lysis, the intracellular hemoglobin concentration could be decreased to a point where a standard macroscopic PIV measurement was possible. A velocity profile of a 44% GC suspension in a circular channel with a diameter of 9.5 mm was measured with high spatial resolution. Meanwhile, the rheological behavior was found to be comparable with blood.


Assuntos
Eritrócitos/citologia , Reologia/métodos , Animais , Hemólise , Hemorreologia , Suínos
4.
Cardiovasc Eng Technol ; 6(3): 376-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26577368

RESUMO

It is of the utmost importance to reduce flow-induced hemolysis in devices such as heart-valve prostheses and blood pumps. Thus, in vitro measurements of hemolysis are performed in order to optimize their design in this regard. However, with existing measurement methods, hemolysis can only be assessed as an integrated value over the complete test-circuit. Currently, there are no spatially-resolved in vitro hemolysis measurement techniques known to the authors that would allow for a determination of the critical regions within a device. In this study, a novel spatially-resolved measurement principle is proposed. Ghost cells (i.e. erythrocytes with a lower hemoglobin concentration) were loaded with a calcium-dicitrato complex, and a fluorescent calcium indicator was suspended in the extracellular medium. Calcium and indicator are separated until the cell membrane ruptures (i.e. hemolysis occurs). In the moment of hemolysis, the two compounds bind to each other and emit a fluorescent signal that can be recorded and spatially-resolved in a setup very similar to a standard Particle Image Velocimetry measurement. A proof-of-principle experiment was performed by intentionally inducing hemolysis in a flow-model with a surfactant. The surfactant-induced hemolysis demonstrated a clear increase of the fluorescent signal compared to that of a negative reference. Furthermore, the signal was spatially restricted to the area of hemolysis. Although further challenges need to be addressed, a successful proof-of-principle for novel spatially-resolved hemolysis detection is presented. This method can contribute to better design optimization of devices with respect to flow-induced hemolysis.


Assuntos
Membrana Eritrocítica/fisiologia , Corantes Fluorescentes/farmacocinética , Hemólise , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Animais , Cálcio/metabolismo , Técnicas In Vitro , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA