Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Biol Macromol ; : 133340, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925195

RESUMO

As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.

2.
Int J Biol Macromol ; 268(Pt 2): 131936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692533

RESUMO

With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.


Assuntos
Celulose , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Celulose/química , Nanoestruturas/química , Antioxidantes/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas
3.
Nano Lett ; 24(9): 2861-2869, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408922

RESUMO

Advanced portable healthcare devices with high efficiencies, small pressure drops, and high-temperature resistance are urgently desired in harsh environments with high temperatures, high humidities, and high levels of atmospheric pollution. Triboelectric nanogenerators (TENGs), which serve as energy converters in a revolutionary self-powered sensor device, present a sustainable solution for meeting these requirements. In this work, we developed a porous negative triboelectric material by synthesizing ZIF-8 on the surface of a cellulose/graphene oxide aerogel, grafting it with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane, and adding a negative corona treatment, and it was combined with a positive triboelectric material to create a cellulose nanofiber-based TENG self-powered filter. The devices achieved a balance between a small pressure drop (53 Pa) and high filtration efficiency (98.97%, 99.65%, and 99.93% for PM0.3, PM0.5, and PM1, respectively), demonstrating robust filtration properties at high temperatures and high humidities. Our work provides a new approach for developing self-powered wearable healthcare devices with excellent air filtration properties.

4.
Small ; : e2308195, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072819

RESUMO

Cellulose-based triboelectric nanogenerators (TENGs) have attracted widespread attention due to the low cost and environmentally friendly characteristics of cellulose. However, achieving high electrical energy output from these generators still presents significant challenges. Here, cellulose is dissolved-regenerated to form a composite aerogel with high specific surface area, in which cellulose-based composites with excellent negative triboelectric properties are developed by coupling the rich 3D network structure of the regenerated cellulose aerogel, modified barium titanate, and poly(vinylidene fluoride). The TENGs assembled from the composite materials exhibit an output voltage of 1040 V and a current of 1.165 mA at an external force of 8 N and a frequency of 4 Hz, outperforming all cellulose-based negative triboelectric materials. In addition, the nanogenerators have a stable electrical energy output capacity, with no significant property degradation in 100 000 contact-separation tests. The excellent electrical output property of the composite materials enables them to harvest energy from human movement and waterdrops, demonstrating their great application prospects in wearable devices, energy harvesting devices, self-powered sensors, and other fields.

5.
Food Sci Biotechnol ; 32(11): 1459-1478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37637837

RESUMO

Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.

6.
Cell Death Dis ; 14(6): 354, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296095

RESUMO

Keratinocyte hyperproliferation is a key pathogenic factor in psoriasis. However, the mechanisms that regulate keratinocyte hyperproliferation in this condition remain unclear. Here, we found that SLC35E1 was highly expressed in keratinocytes of patients with psoriasis and that Slc35e1-/- mice displayed a less severe imiquimod (IMQ)-induced psoriasis-like phenotype than their wild-type siblings. In addition, SLC35E1 deficiency inhibited keratinocyte proliferation in both mice and cultured cells. On a molecular level, SLC35E1 was found to regulate zinc ion concentrations and subcellular localization, while zinc ion chelation reversed the IMQ-induced psoriatic phenotype in Slc35e1-/- mice. Meanwhile, epidermal zinc ion levels were decreased in patients with psoriasis and zinc ion supplementation alleviated the psoriatic phenotype in an IMQ-induced mouse model of psoriasis. Our results indicated that SLC35E1 can promote keratinocyte proliferation by regulating zinc ion homeostasis and zinc ion supplementation has potential as a therapy for psoriasis.


Assuntos
Psoríase , Animais , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Homeostase , Imiquimode/efeitos adversos , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , Proteínas de Transporte de Nucleotídeos/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética
7.
Genome Biol ; 24(1): 145, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353840

RESUMO

BACKGROUND: The CRISPR/Cas12a and CRISPR/Cas13d systems are widely used for fundamental research and hold great potential for future clinical applications. However, the short half-life of guide RNAs (gRNAs), particularly free gRNAs without Cas nuclease binding, limits their editing efficiency and durability. RESULTS: Here, we engineer circular free gRNAs (cgRNAs) to increase their stability, and thus availability for Cas12a and Cas13d processing and loading, to boost editing. cgRNAs increases the efficiency of Cas12a-based transcription activators and genomic DNA cleavage by approximately 2.1- to 40.2-fold for single gene editing and 1.7- to 2.1-fold for multiplexed gene editing than their linear counterparts, without compromising specificity, across multiple sites and cell lines. Similarly, the RNA interference efficiency of Cas13d is increased by around 1.8-fold. In in vivo mouse liver, cgRNAs are more potent in activating gene expression and cleaving genomic DNA. CONCLUSIONS: CgRNAs enable more efficient programmable DNA and RNA editing for Cas12a and Cas13d with broad applicability for fundamental research and gene therapy.


Assuntos
Sistemas CRISPR-Cas , RNA Circular , Animais , Camundongos , Edição de RNA , Edição de Genes , DNA/genética
8.
Nucleic Acids Res ; 51(10): 5271-5284, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094074

RESUMO

Liquid-liquid phase separation (LLPS) plays a critical role in regulating gene transcription via the formation of transcriptional condensates. However, LLPS has not been reported to be engineered as a tool to activate endogenous gene expression in mammalian cells or in vivo. Here, we developed a droplet-forming CRISPR (clustered regularly interspaced short palindromic repeats) gene activation system (DropCRISPRa) to activate transcription with high efficiency via combining the CRISPR-SunTag system with FETIDR-AD fusion proteins, which contain an N-terminal intrinsically disordered region (IDR) of a FET protein (FUS or TAF15) and a transcription activation domain (AD, VP64/P65/VPR). In this system, the FETIDR-AD fusion protein formed phase separation condensates at the target sites, which could recruit endogenous BRD4 and RNA polymerase II with an S2 phosphorylated C-terminal domain (CTD) to enhance transcription elongation. IDR-FUS9Y>S and IDR-FUSG156E, two mutants with deficient and aberrant phase separation respectively, confirmed that appropriate phase separation was required for efficient gene activation. Further, the DropCRISPRa system was compatible with a broad set of CRISPR-associated (Cas) proteins and ADs, including dLbCas12a, dAsCas12a, dSpCas9 and the miniature dUnCas12f1, and VP64, P65 and VPR. Finally, the DropCRISPRa system could activate target genes in mice. Therefore, this study provides a robust tool to activate gene expression for foundational research and potential therapeutics.


Assuntos
Sistemas CRISPR-Cas , Ativação Transcricional , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Mamíferos , Proteínas Nucleares/genética , Fatores de Transcrição/genética
9.
Cell Biosci ; 13(1): 11, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647130

RESUMO

BACKGROUND: Profiling and comparing the performance of current widely used DNA targeting CRISPR systems provide the basic information for the gene-editing toolkit and can be a useful resource for this field. In the current study, we made a parallel comparison between the recently reported miniature Cas12f1 (Un1Cas12f1 and AsCas12f1) and the widely used Cas12a and Cas9 nucleases in mammalian cells. RESULTS: We found that as a CRISPRa activator, Un1Cas12f1 could induce gene expression with a comparable level to that of Cas12a and Cas9, while as a DNA cleavage editor, Cas12f1 exhibited similar properties to Cas12a, like high specificity and dominantly induced deletions over insertions, but with less activity. In contrast, wild-type SpCas9 showed the highest activity, lowest specificity, and induced balanced deletions and insertions. Thus, Cas12f1 is recommended for gene-activation-based applications, Cas12a is for therapy applications, and wild-type Cas9 is for in vitro and animal investigations. CONCLUSION: The comparison provided the editing properties of the widely used DNA-targeting CRISPR systems in the gene-editing field.

10.
Br J Dermatol ; 188(1): 84-93, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689521

RESUMO

BACKGROUND: Keloids represent one extreme of aberrant dermal wound healing and are characterized by fibroblast hyperproliferation and excessive deposition of extracellular matrix. Genetics is a major factor for predisposition to keloids and genome-wide association study has identified a single-nucleotide polymorphism (SNP) rs873549 at 1q41 as a susceptibility locus. The SNP rs873549, and the SNPs in strong linkage disequilibrium (LD) with rs873549, may be involved in keloid development. However, the functional significance of these SNPs in keloid pathogenesis remains elusive. OBJECTIVES: To investigate the function and mechanism of SNP rs873549 and the SNPs in strong LD with rs873549 in keloids. METHODS: SNPs in strong LD with rs873549 were analysed using Haploview. The expression levels of the genes near the susceptibility locus were analysed using quantitative real-time polymerase chain reaction. The interaction between rs1348270-containing enhancer and the long noncoding RNA down expressed in keloids (DEIK) (formerly RP11-400N13.1) promoter in fibroblasts was investigated using chromosome conformation capture. The enhancer activity of the rs1348270 locus was evaluated using luciferase reporter assay. Knockdown experiments were used to explore the function of DEIK in keloids. RNA-Seq was performed to investigate the mechanism by which DEIK regulates the expression of collagens POSTN and COMP. RESULTS: rs1348270, an enhancer-located SNP in strong LD with rs873549, mediated looping with the promoter of DEIK. The risk variant was associated with decreased enhancer-promoter interaction and DEIK down-expression in keloids. Mechanistically, downregulation of DEIK increased the expression of collagens POSTN and COMP through upregulating BMP2. Furthermore, correlation analysis revealed that DEIK expression was inversely correlated with BMP2, POSTN and COMP expression in both keloid and normal fibroblasts. CONCLUSIONS: Our findings suggest that the risk variant rs1348270 is located in an enhancer and is associated with the downregulation of DEIK in keloids, and that downregulation of DEIK increases the expression of collagens POSTN and COMP through BMP2 in keloid fibroblasts. These findings will help to provide a more thorough understanding of the role played by genetic factors in keloid development and may lead to new strategies for screening and therapy in keloid-susceptible populations.


Assuntos
Queloide , RNA Longo não Codificante , Humanos , Queloide/patologia , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/metabolismo , Estudo de Associação Genômica Ampla , Regiões Promotoras Genéticas , Fibroblastos/metabolismo
11.
BMC Biol ; 20(1): 91, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468792

RESUMO

BACKGROUND: The CRISPR-Cas12a (formerly Cpf1) system is a versatile gene-editing tool with properties distinct from the broadly used Cas9 system. Features such as recognition of T-rich protospacer-adjacent motif (PAM) and generation of sticky breaks, as well as amenability for multiplex editing in a single crRNA and lower off-target nuclease activity, broaden the targeting scope of available tools and enable more accurate genome editing. However, the widespread use of the nuclease for gene editing, especially in clinical applications, is hindered by insufficient activity and specificity despite previous efforts to improve the system. Currently reported Cas12a variants achieve high activity with a compromise of specificity. Here, we used structure-guided protein engineering to improve both editing efficiency and targeting accuracy of Acidaminococcus sp. Cas12a (AsCas12a) and Lachnospiraceae bacterium Cas12a (LbCas12a). RESULTS: We created new AsCas12a variant termed "AsCas12a-Plus" with increased activity (1.5~2.0-fold improvement) and specificity (reducing off-targets from 29 to 23 and specificity index increased from 92% to 94% with 33 sgRNAs), and this property was retained in multiplex editing and transcriptional activation. When used to disrupt the oncogenic BRAFV600E mutant, AsCas12a-Plus showed less off-target activity while maintaining comparable editing efficiency and BRAFV600E cancer cell killing. By introducing the corresponding substitutions into LbCas12a, we also generated LbCas12a-Plus (activity improved ~1.1-fold and off-targets decreased from 20 to 12 while specificity index increased from 78% to 89% with 15 sgRNAs), suggesting this strategy may be generally applicable across Cas12a orthologs. We compared Cas12a-Plus, other variants described in this study, and the reported enCas12a-HF, enCas12a, and Cas12a-ultra, and found that Cas12a-Plus outperformed other variants with a good balance for enhanced activity and improved specificity. CONCLUSIONS: Our discoveries provide alternative AsCas12a and LbCas12a variants with high specificity and activity, which expand the gene-editing toolbox and can be more suitable for clinical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Acidaminococcus/genética , Endonucleases/genética , Proteínas Proto-Oncogênicas B-raf/genética
12.
J Gene Med ; 23(11): e3377, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270141

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Edição de Genes/normas , Engenharia Genética/métodos , Engenharia Genética/normas , RNA Guia de Cinetoplastídeos , Animais , Endonucleases/genética , Humanos
13.
Commun Biol ; 4(1): 830, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215845

RESUMO

Genome-wide identification of DNA double-strand breaks (DSBs) induced by CRISPR-associated protein (Cas) systems is vital for profiling the off-target events of Cas nucleases. However, current methods for off-target discovery are tedious and costly, restricting their widespread applications. Here we present an easy alternative method for CRISPR off-target detection by tracing the integrated oligonucleotide Tag using next-generation-sequencing (CRISPR-Tag-seq, or Tag-seq). Tag-seq enables rapid and convenient profiling of nuclease-induced DSBs by incorporating the optimized double-stranded oligodeoxynucleotide sequence (termed Tag), adapters, and PCR primers. Moreover, we employ a one-step procedure for library preparation in Tag-seq, which can be applied in the routine workflow of a molecular biology laboratory. We further show that Tag-seq successfully determines the cleavage specificity of SpCas9 variants and Cas12a/Cpf1 in a large-scale manner, and discover the integration sites of exogenous genes introduced by the Sleeping Beauty transposon. Our results demonstrate that Tag-seq is an efficient and scalable approach to genome-wide identification of Cas-nuclease-induced off-targets.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteína 9 Associada à CRISPR/genética , DNA/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Oligodesoxirribonucleotídeos/genética , Reprodutibilidade dos Testes
15.
RSC Adv ; 11(54): 34291-34299, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35497289

RESUMO

As one kind of reactive carbonyl species (RCS), formaldehyde (FA) with a high concentration could be extremely toxic to living bodies as well as the environment. This paper reports a three-dimensional (3D) Tb3+@Ag-MOFs-based fluorescent probe for fast sensing of FA, which uses a novel turn-on mechanism based on the luminescence induced by Tb3+. The MOF sensor shows broad dynamic ranges of 0.1-1 mM for FA with the detection limit of 1.9 µM. For online and real-time detection of FA, a portable smartphone platform was employed to analyze the RGB values of the fluorescence by a smartphone application. By incorporating this probe into a polyacrylonitrile (PAN) layer, we synthesized a film composite that could effectively remove FA in real samples including milk and chemical factory wastewater, and the removal rate reached 98.52% and 95.38% respectively. Moreover, the potential of the film to remove gaseous FA was confirmed by experiments as well.

16.
Nucleic Acids Res ; 48(18): 10590-10601, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986839

RESUMO

The CRISPR/Cas system is widely used for genome editing. However, robust and targeted insertion of a DNA segment remains a challenge. Here, we present a fusion nuclease (Cas9-N57) to enhance site-specific DNA integration via a fused DNA binding domain of Sleeping Beauty transposase to tether the DNA segment to the Cas9/sgRNA complex. The insertion was unidirectional and specific, and DNA fragments up to 12 kb in length were successfully integrated. As a test of the system, Cas9-N57 mediated the insertion of a CD19-specific chimeric antigen receptor (CD19-CAR) cassette into the AAVS1 locus in human T cells, and induced intrahepatic cholangiocarcinoma in mice by simultaneously mediating the insertion of oncogenic KrasG12D into the Rosa26 locus and disrupting Trp53 and Pten. Moreover, the nuclease-N57 fusion proteins based on AsCpf1 (AsCas12a) and CjCas9 exhibited similar activity. These findings demonstrate that CRISPR-associated nuclease-N57 protein fusion is a powerful tool for targeted DNA insertion and holds great potential for gene therapy applications.


Assuntos
Proteína 9 Associada à CRISPR/genética , Colangiocarcinoma/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/genética , Proteína Supressora de Tumor p53/genética , Animais , Sistemas CRISPR-Cas/genética , Colangiocarcinoma/patologia , Proteínas de Ligação a DNA/genética , Edição de Genes , Técnicas de Introdução de Genes , Terapia Genética , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Domínios Proteicos/genética , RNA Guia de Cinetoplastídeos , RNA não Traduzido/genética , Linfócitos T/metabolismo , Linfócitos T/patologia
17.
Water Sci Technol ; 82(3): 440-453, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32960790

RESUMO

A polyamine functionalized polystyrene resin (PSATA) was prepared via condensation reaction of acetylated polystyrene resin with triethylenetetramine, which, upon NaBH4 reduction, produced PSATAR. In comparison with the PSATA, the PSATAR with more flexible amine groups shows improved structural properties, and the equilibrium adsorption capacities of phenol, 2-nitrophenol (ONP) and 2,4-dinitrophenol (DNP) in wastewater were up to 1.073, 1.832 and 1.901 mmol/g, respectively. Their adsorption isotherms fit well with the Freundlich model, indicating a multilayer, heterogeneous adsorption nature. Kinetic studies indicated that the adsorption of phenolic compounds conforms to the pseudo-second-order kinetics with the adsorption rate controlled by film diffusion for ONP and DNP, and intra-particle diffusion in the later stage for phenol.


Assuntos
Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Cinética , Fenóis , Poliestirenos , Trientina , Águas Residuárias
18.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32592681

RESUMO

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma Humano , Neurogênese/genética , Regiões Promotoras Genéticas , Adulto , Linhagem Celular , Cérebro/citologia , Cérebro/crescimento & desenvolvimento , Cérebro/metabolismo , Cromatina/ultraestrutura , Mapeamento Cromossômico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/metabolismo , Lobo Temporal/citologia , Lobo Temporal/crescimento & desenvolvimento , Lobo Temporal/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Nanoscale ; 11(35): 16336-16341, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455962

RESUMO

The simultaneous possession of high tumor-targeting efficiency, long blood circulation, and low normal-tissue retention is critical for future clinically translatable nanomedicines. Herein, we reported a facile in situ glycoconjugation strategy for the synthesis of near-infrared (NIR)-emitting gold glyconanoparticles (AuGNPs, ∼2.4 nm) using 1-thio-ß-d-glucose as both the surface ligand and the reducing agent in the presence of a gold precursor. The ultrasmall AuGNPs showed similar low healthy organ retention to that of the renal-clearable ultrasmall nonglyconanoparticles, but ∼10 and 2.5 times higher in vitro and in vivo tumor-targeting efficiencies, respectively, were observed. This facile glycoconjugation strategy of ultrasmall AuGNPs was found to show activity towards glucose transporters in the cancer cells and prolonged blood circulation with both renal and hepatobiliary clearance pathways, which synergistically enhanced the tumor targeting of the ultrasmall AuGNPs. This discovery provides a smart strategy for the improvement in tumor targeting by ultrasmall NPs and further strengthens our understanding of glycoconjugation in designing future clinically translatable nanomedicines.


Assuntos
Sistemas de Liberação de Medicamentos , Corantes Fluorescentes , Glicoconjugados , Ouro , Nanopartículas Metálicas , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Glicoconjugados/química , Glicoconjugados/farmacocinética , Glicoconjugados/farmacologia , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA