Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Nat Commun ; 15(1): 3949, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729934

RESUMO

Topological domain structures have drawn great attention as they have potential applications in future electronic devices. As an important concept linking the quantum and classical magnetism, a magnetic Bloch point, predicted in 1960s but not observed directly so far, is a singular point around which magnetization vectors orient to nearly all directions. Here we show polar Bloch points in tensile-strained ultrathin ferroelectric PbTiO3 films, which are alternatively visualized by phase-field simulations and aberration-corrected scanning transmission electron microscopic imaging. The phase-field simulations indicate local steady-state negative capacitance around the Bloch points. The observation of polar Bloch points and their emergent properties consequently implies novel applications in future integrated circuits and low power electronic devices.

3.
Nano Lett ; 24(14): 4082-4090, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38526914

RESUMO

The generally nonpolar SrTiO3 has attracted more attention recently because of its possibly induced novel polar states and related paraelectric-ferroelectric phase transitions. By using controlled pulsed laser deposition, high-quality, ultrathin, and strained SrTiO3 layers were obtained. Here, transmission electron microscopy and theoretical simulations have unveiled highly polar states in SrTiO3 films even down to one unit cell at room temperature, which were stabilized in the PbTiO3/SrTiO3/PbTiO3 sandwich structures by in-plane tensile strain and interfacial coupling, as evidenced by large tetragonality (∼1.05), notable polar ion displacement (0.019 nm), and thus ultrahigh spontaneous polarization (up to ∼50 µC/cm2). These values are nearly comparable to those of the strong ferroelectrics as the PbZrxTi1-xO3 family. Our findings provide an effective and practical approach for integrating large strain states into oxide films and inducing polarization in nonpolar materials, which may broaden the functionality of nonpolar oxides and pave the way for the discovery of new electronic materials.

5.
Sci Adv ; 9(45): eadi6086, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939180

RESUMO

Physical aging is a long-lasting research hot spot in the glass community, yet its long-term effects remain unclear because of the limited experimental time. In this study, we discover the extraordinary aging effects in five typical lunar glassy particles with diameters ranging from about 20 to 53 micrometers selected from Chang'e-5 lunar regolith. It is found that geological time scales' aging can lead to unusually huge modulus enhancements larger than 73.5% while much weaker effects on hardness (i.e., varies decoupling evolutions of Young's modulus and hardness during aging) in these lunar glassy samples. Such extraordinary aging effects are primarily attributed to the natural selected complex glassy compositions and structures, consistent with high entropy and minor element doping criteria, prevailing under the special lunar conditions and the extensive aging time for the lunar glasses. This study offers valuable insights for developing high-performance and stable glassy materials for radiation protection and advanced space explorations.

6.
Nat Commun ; 14(1): 3376, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291226

RESUMO

The period of polar domain (d) in ferroics was commonly believed to scale with corresponding film thicknesses (h), following the classical Kittel's law of d ∝ [Formula: see text]. Here, we have not only observed that this relationship fails in the case of polar skyrmions, where the period shrinks nearly to a constant value, or even experiences a slight increase, but also discovered that skyrmions have further persisted in [(PbTiO3)2/(SrTiO3)2]10 ultrathin superlattices. Both experimental and theoretical results indicate that the skyrmion periods (d) and PbTiO3 layer thicknesses in superlattice (h) obey the hyperbolic function of d = Ah + [Formula: see text] other than previous believed, simple square root law. Phase-field analysis indicates that the relationship originates from the different energy competitions of the superlattices with PbTiO3 layer thicknesses. This work exemplified the critical size problems faced by nanoscale ferroelectric device designing in the post-Moore era.


Assuntos
Filmes Cinematográficos
7.
Nat Commun ; 14(1): 2788, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188706

RESUMO

Incoherent interfaces with large mismatches usually exhibit very weak interfacial interactions so that they rarely generate intriguing interfacial properties. Here we demonstrate unexpected strong interfacial interactions at the incoherent AlN/Al2O3 (0001) interface with a large mismatch by combining transmission electron microscopy, first-principles calculations, and cathodoluminescence spectroscopy. It is revealed that strong interfacial interactions have significantly tailored the interfacial atomic structure and electronic properties. Misfit dislocation networks and stacking faults are formed at this interface, which is rarely observed at other incoherent interfaces. The band gap of the interface reduces significantly to ~ 3.9 eV due to the competition between the elongated Al-N and Al-O bonds across the interface. Thus this incoherent interface can generate a very strong interfacial ultraviolet light emission. Our findings suggest that incoherent interfaces can exhibit strong interfacial interactions and unique interfacial properties, thereby opening an avenue for the development of related heterojunction materials and devices.

8.
Nano Lett ; 23(4): 1522-1529, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36722976

RESUMO

Antiferroelectrics characterized by voltage-driven reversible transitions between antiparallel and parallel polarity are promising for cutting-edge electronic and electrical power applications. Wide-ranging explorations revealing the macroscopic performances and microstructural characteristics of typical antiferroelectric systems have been conducted. However, the underlying mechanism has not yet been fully unraveled, which depends largely on the atomistic processes. Herein, based on atomic-resolution transmission electron microscopy, the deterministic phase transition pathway along with the underlying lattice-by-lattice details in lead zirconate thin films was elucidated. Specifically, we identified a new type of ferrielectric-like dipole configuration with both angular and amplitude modulations, which plays the role of a precursor for a subsequent antiferroelectric to ferroelectric transformation. With the participation of the ferrielectric-like phase, the phase transition pathways driven by the phase boundary have been revealed. We provide new insights into the consecutive phase transformation in low-dimensional lead zirconate, which thus would promote potential antiferroelectric-based multifunctional devices.

9.
ACS Appl Mater Interfaces ; 15(3): 4226-4233, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633961

RESUMO

Inducing clear ferroelectricity in the quantum paraelectric SrTiO3 is important for triggering methods to discover hidden phases in condensed matter physics. Several methods such as isotope substitution and freestanding membranes could introduce ferroelectricity in SrTiO3 toward nonvolatile memory applications. However, the stable transformation from quantum paraelectric SrTiO3 to ferroelectricity SrTiO3 at room temperature still remains challenging. Here, we used multiple nano-engineering in (SrTiO3)0.65/(CeO2)0.35 films to achieve an emergent room-temperature ferroelectricity. It is shown that the CeO2 nanocolumns impose large out-of-plane strains and induce Sr/O deficiency in the SrTiO3 matrix to form a clear tetragonal structure, which leads to an apparent room-temperature ferroelectric polarization up to 2.5 µC/cm2. In collaboration with density functional theory calculations, it is proposed that the compressive strains combined with elemental deficiency give rise to local redistribution of charge density and orbital order, which induce emergent tetragonality of the strained SrTiO3. Our work thus paves a pathway for architecting functional systems in perovskite oxides using a multiple nano-design.

10.
ACS Appl Mater Interfaces ; 15(2): 3163-3171, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36621962

RESUMO

Materials with multiple order parameters, typically, in which ferroelectricity and magnetism are coupled, are illuminative for next-generation multifunctional electronics. However, searching for such single-phase multiferroics is challenging owing to antagonistic orbital occupancy and chemical bonding requirements for polarity and magnetism. Appropriate multiferroic candidates have been proposed, but their practical implementation is impeded by the low working temperature, weak coupling between ferroic orders, or antiparallel spin alignment in magnetic sublattices. Here, we report a family of single-phase multiferroic materials in which high-temperature magnetism and voltage-switchable ferroelectricity are coupled. Using pulsed laser deposition, we have fabricated single-crystalline thin films incorporating a uniformly percolated open-shell dn framework, which are composed of Fe cations with B-site occupancy and exhibit long-range spin ordering into the displacive ferroelectric PbTiO3 lattice, as demonstrated by atomically resolved chemical analysis. The tetragonal polar Pb(Ti1-x,Fex)O3 (PFT(x), x ≤ 0.10) family exhibits a switchable ferroelectric nature and magnetic interaction with a moderate coercive field of around 300 Oe at room temperature. Notably, the magnetic order even persists above 500 K, which is higher than already reported potential multiferroic candidates until now. Our strategy of merging a spin-ordered sublattice into inherent ferroelectrics via atomic occupancy engineering provides an available pathway for highly thermally stable multiferroic and spintronic applications.

11.
Nano Lett ; 22(22): 8892-8899, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36331549

RESUMO

Polar topologies have received extensive attention due to their exotic configurations and functionalities. Understanding their responsive behaviors to external stimuli, especially thermal excitation, is highly desirable to extend their applications to high temperature, which is still unclear. Here, combining in situ transmission electron microscopy and phase-field simulations, the thermal dynamics of the flux-closure domains were illuminated in PbTiO3/SrTiO3 multilayers. In-depth analyses suggested that the topological transition processes from a/c domains to flux-closure quadrants were influenced by the boundary conditions of PbTiO3 layers. The symmetrical boundary condition stabilized the flux-closure domains at higher temperature than in the asymmetrical case. Furthermore, the reversible thermal responsive behaviors of the flux-closure domains displayed superior thermal stability, which maintained robust up to 450 °C (near the Curie temperature). This work provides new insights into the dynamics of polar topologies under thermal excitation and facilitates their applications as nanoelectronics under extreme conditions.

12.
ACS Appl Mater Interfaces ; 14(42): 48052-48060, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36226575

RESUMO

High magnetic order temperature, sustainable polar insulating state, and tolerance to device integrations are substantial advantages for applications in next-generation spintronics. However, engineering such functionality in a single-phase system remains a challenge owing to the contradicted chemical and electronic requirements for polar nature and magnetism, especially with an ordering state highly above room temperature. Perovskite-related oxides with unique flexibility allow electron-unpaired subsystems to merge into the polar lattice to induce magnetic interactions, combined with their inherent asymmetry, thereby promising polar magnet design. Herein, by atomic-level composition assembly, a family of Ti/Fe co-occupied perovskite oxide films Pb(Ti1-x,Fex)O3 (PFT(x)) with a Ruddlesden-Popper superstructure are successfully synthesized on several different substrates, demonstrating exceptional adaptability to different integration conditions. Furthermore, second-harmonic generation measurements convince the symmetry-breaking polar character. Notably, a ferromagnetic ground state up to 600 K and a steady insulating state far beyond room temperature were achieved simultaneously in these films. This strategy of constructing layered modular superlattices in perovskite oxides could be extended to other strongly correlated systems for triggering nontrivial quantum physical phenomena.

13.
Micron ; 163: 103359, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201915

RESUMO

ε-Fe2O3 has attracted intense interest in the field of magnetoelectric materials due to its promising physical properties. The epitaxial growth of ε-Fe2O3 thin films is challenging since it is a metastable phase of iron oxide. In this study, ε-Fe2O3 (001) thin films are epitaxially grown on SrTiO3 (111) substrates by pulsed laser deposition (PLD). The crystal structure, valence state, and microstructure of the ε-Fe2O3 thin films are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. It is revealed that the oxygen pressure, deposition and annealing temperatures, and laser beam energy affect significantly the epitaxial growth of ε-Fe2O3 thin films. The orientation relationship between films and substrates is ε-Fe2O3 (001)[010] // SrTiO3 (111)[1¯10]. The magnetic hysteresis loops tested by a superconducting quantum interference device and UV-Vis reflection spectra suggest that the ε-Fe2O3 thin film with thickness of ∼ 20 nm has a strong magnetic anisotropy, a coercivity of 600 Oe, and an indirect band gap of 3.26 eV.

14.
Nat Commun ; 13(1): 5903, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202850

RESUMO

Emerging functionalities in two-dimensional materials, such as ferromagnetism, superconductivity and ferroelectricity, open new avenues for promising nanoelectronic applications. Here, we report the discovery of intrinsic in-plane room-temperature ferroelectricity in two-dimensional Bi2TeO5 grown by chemical vapor deposition, where spontaneous polarization originates from Bi column displacements. We found an intercalated buffer layer consist of mixed Bi/Te column as 180° domain wall which enables facile polarized domain engineering, including continuously tunable domain width by pinning different concentration of buffer layers, and even ferroelectric-antiferroelectric phase transition when the polarization unit is pinned down to single atomic column. More interestingly, the intercalated Bi/Te buffer layer can interconvert to polarized Bi columns which end up with series terraced domain walls and unusual fan-shaped ferroelectric domain. The buffer layer induced size and shape tunable ferroelectric domain in two-dimensional Bi2TeO5 offer insights into the manipulation of functionalities in van der Waals materials for future nanoelectronics.

15.
Nat Mater ; 21(10): 1137-1143, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075967

RESUMO

Rare earth (RE) addition to steels to produce RE steels has been widely applied when aiming to improve steel properties. However, RE steels have exhibited extremely variable mechanical performances, which has become a bottleneck in the past few decades for their production, utilization and related study. Here in this work, we discovered that the property variation of RE steels stems from the presence of oxygen-based inclusions. We proposed a dual low-oxygen technology, and keeping low levels of oxygen content in steel melts and particularly in the raw RE materials, which have long been ignored, to achieve impressively stable and favourable RE effects. The fatigue life is greatly improved by only parts-per-million-level RE addition, with a 40-fold improvement for the tension-compression fatigue life and a 40% enhancement of the rolling contact fatigue life. We find that RE appears to act by lowering the carbon diffusion rate and by retarding ferrite nucleation at the austenite grain boundaries. Our study reveals that only under very low-oxygen conditions can RE perform a vital role in purifying, modifying and micro-alloying steels, to improve the performance of RE steels.


Assuntos
Oxigênio , Aço , Ligas , Carbono
16.
ACS Appl Mater Interfaces ; 14(32): 36875-36881, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35926161

RESUMO

Crystal defects play an important role in the degradation and failure of semiconductor materials and devices. Direct determination of band gap of defects is a critical step for clarifying how the defects affect the physical properties of semiconductors. Here, high-quality aluminum nitride (AlN) thin films were grown epitaxially on single-crystal Al2O3 substrates via pulsed laser deposition. The atomic structure and band gap of three types of inversion domain boundaries (IDBs) in AlN were determined using aberration-corrected transmission electron microscopy and atomic-resolution valence electron energy-loss spectroscopy. It was found that the band gap of all of the IDBs reduces evidently compared to that of the bulk AlN. The maximum band gap reduction of the IDBs is 1.0 eV. First-principles calculations revealed that the band gap reduction of the IDBs is mainly due to the rise of pz orbital at the valence band maximum, which originates from the elongated Al-N bonds along the [0001] direction at the IDBs. The successful band gap determination of defects paves an avenue for quantitatively evaluating the effect of defects on the performance of semiconductor materials and devices.

17.
Adv Mater ; 34(32): e2106396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730916

RESUMO

Manipulating ferroic orders and realizing their coupling in multiferroics at room temperature are promising for designing future multifunctional devices. Single external stimulation has been extensively proved to demonstrate the ability of ferroelastic switching in multiferroic oxides, which is crucial to bridge the ferroelectricity and magnetism. However, it is still challenging to directly realize multi-field-driven magnetoelectric coupling in multiferroic oxides as potential multifunctional electrical devices. Here, novel magneto-electric-optical coupling in multiferroic BiFeO3 -based thin films at room temperature mediated by deterministic ferroelastic switching using piezoresponse/magnetic force microscopy and aberration-corrected transmission electron microscopy are shown. Reversible photoinduced ferroelastic switching exhibiting magnetoelectric responses is confirmed in BiFeO3 -based films, which works at flexible strain states. This work directly demonstrates room-temperature magneto-electric-optical coupling in multiferroic films, which provides a framework for designing potential multi-field-driven magnetoelectric devices such as energy conservation memories.

18.
Proc Natl Acad Sci U S A ; 119(14): e2122218119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357967

RESUMO

Knowledge of deformation mechanisms in aragonite, one of the three crystalline polymorphs of CaCO3, is essential to understand the overall excellent mechanical performance of nacres. Dislocation slip and deformation twinning were claimed previously as plasticity carriers in aragonite, but crystallographic features of dislocations and twins have been poorly understood. Here, utilizing various transmission electron microscopy techniques, we reveal the atomic structures of twins, partial dislocations, and associated stacking faults. Combining a topological model and density functional theory calculations, we identify complete twin elements, characters of twinning disconnection, and the corresponding twin shear angle (∼8.8°) and rationalize unique partial dislocations as well. Additionally, we reveal an unreported potential energy dissipation mode within aragonite, namely, the formation of nanograins via the pile-up of partial dislocations. Based on the microstructural comparisons of biogenic and abiotic aragonite, we find that the crystallographic features of twins are the same. However, the twin density is much lower in abiotic aragonite due to the vastly different crystallization conditions, which in turn are likely due to the absence of organics, high temperature and pressure differences, the variation in inorganic impurities, or a combination thereof. Our findings enrich the knowledge of intrinsic crystal defects that accommodate plastic deformation in aragonite and provide insights into designing bioengineering materials with better strength and toughness.

19.
ACS Appl Mater Interfaces ; 14(7): 9724-9733, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138804

RESUMO

Ferroelectric ultrathin films have great potential in electronic devices and device miniaturization with the innovation of technology. In the process of product commercialization, understanding the domain evolution and topological properties of ferroelectrics is a prerequisite for high-density storage devices. In this work, a series of ultrathin PbTiO3 (PTO) films with varying thicknesses were deposited on cubic KTaO3 substrates by pulsed laser deposition and were researched by Cs-corrected scanning transmission electron microscopy (STEM), reciprocal space mapping (RSM), and piezoresponse force microscopy (PFM). RSM experiments indicate the existence of a/c domains and show that the lattice constant varies continuously, which is further confirmed by atomic-scale STEM imaging. Diffraction contrast analysis clarifies that with the decrease in PTO film thickness, the critical thickness for the formation of a/c domains could be missing. When the thickness of PTO films is less than 6 nm, the domain configurations in the ultrathin PTO films are the coexistence of a/c domains and bowl-like topological structures, where the latter ones were identified as convergent and divergent types of meron. In addition, abundant 90° charged domain walls in these ultrathin PTO films were identified. PFM studies reveal clear ferroelectric properties for these ultrathin PTO films. These results may shed light on further understanding the domain evolution and topological properties in ultrathin ferroelectric PTO films.

20.
Nano Lett ; 22(5): 2085-2093, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35179385

RESUMO

Screw dislocation is important not only for understanding plastic deformation of crystals but also for optical and electrical properties of materials. However, characterizations of screw dislocations are still challenging since there is almost no atom distortion when viewed along the dislocation line. In particular, although it is theoretically known that shear strains in heteroepitaxy systems may be relaxed via screw dislocation grids, the specific structures and thickness-dependent evolutions of these grids are still largely unknown. Here, by using orthorhombic [001]-oriented DyScO3 substrates we have directly observed large-scale screw dislocation grids in the DyScO3/BiFeO3 oxide heteroepitaxies exhibiting large shear strain. Pure screw dislocations with a[100] and a[01̅0] Burgers vectors were confirmed by multiscale transmission electron microscopy study. Our results directly confirm screw dislocation grids as a factor to tailor shear strains in epitaxial systems and suggest a practical platform for studying structures and induced responses corresponding to screw dislocations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA