Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Appl Bio Mater ; 7(8): 5369-5381, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39041651

RESUMO

Additive manufacturing, particularly Vat photopolymerization, presents a promising technique for producing complex, tailor-made structures, making it an attractive option for generating single-use components used in biopharmaceutical manufacturing equipment or cell culture devices. However, the potential leaching of cytotoxic compounds from Vat photopolymer resins poses a significant concern, especially regarding cell growth and viability in cell culture applications. This study explores the potential of parylene C coating to enhance the inertness of a polyurethane-based photopolymer resin, aiming to prevent cytotoxicity and improve biocompatibility. The study includes an analysis of extractables from the resin and photoinitiator to evaluate the resin's composition and to define selected marker compounds for investigating the coating efficiency. The time-dependent accumulation of relevant extractable compounds over a 70-day period are assessed to address the long-term use of the coated components. The impact of irradiation on the material and the coating was evaluated, along with an accelerated aging study to address the long-term performance of the coating. Biocompatibility in terms of in vitro cell growth studies is evaluated using Chinese hamster ovary cells, a standard cell line in biopharmaceutical manufacturing. Results demonstrate that parylene C coating significantly reduces the release of cytotoxic compounds, such as the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO). Although accelerated aging indicates a reduction in the barrier properties of the coating over time, the parylene C coating still effectively slows the release of extractables and significantly improves cell compatibility of the 3D printed parts. The findings suggest that parylene C-coated components can be safely integrated into biopharmaceutical manufacturing processes, with recommendations to minimize storage times between coating application and use to ensure optimal performance.


Assuntos
Materiais Revestidos Biocompatíveis , Teste de Materiais , Polímeros , Poliuretanos , Impressão Tridimensional , Xilenos , Poliuretanos/química , Poliuretanos/farmacologia , Xilenos/química , Xilenos/farmacologia , Polímeros/química , Polímeros/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Tamanho da Partícula , Cricetulus , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
Horm Metab Res ; 56(1): 30-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748508

RESUMO

The response rate of advanced adrenocortical carcinoma (ACC) to standard chemotherapy with mitotane and etoposide/doxorubicin/cisplatin (EDP-M) is unsatisfactory, and benefit is frequently short lived. Immune checkpoint inhibitors (CPI) have been examined in patient's refractory to EDP-M, but objective response rates are only approximately 15%. High-dose rate brachytherapy (HDR-BT) is a catheter-based internal radiotherapy and expected to favorably combine with immunotherapies. Here we describe three cases of patients with advanced ACC who were treated with HDR-BT and the CPI pembrolizumab. None of the tumors were positive for established response markers to CPI. All patients were female, had progressed on EDP-M and received external beam radiation therapy for metastatic ACC. Pembrolizumab was initiated 7 or 23 months after brachytherapy in two cases and prior to brachytherapy in one case. Best response of lesions treated with brachytherapy was complete (n=2) or partial response (n=1) that was ongoing at last follow up after 23, 45 and 4 months, respectively. Considering all sites of tumor, response was complete and partial remission in the two patients with brachytherapy prior to pembrolizumab. The third patient developed progressive disease with severe Cushing's syndrome and died due to COVID-19. Immune-related adverse events of colitis (grade 3), gastroduodenitis (grade 3), pneumonitis (grade 2) and thyroiditis (grade 1) occurred in the two patients with systemic response. HDR-BT controlled metastases locally. Sequential combination with CPI therapy may enhance an abscopal antitumoral effect in non-irradiated metastases in ACC. Systematic studies are required to confirm this preliminary experience and to understand underlying mechanisms.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Braquiterapia , Humanos , Feminino , Masculino , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/radioterapia , Receptor de Morte Celular Programada 1/uso terapêutico , Braquiterapia/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/radioterapia
3.
Int J Pharm ; 646: 123441, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37774757

RESUMO

Polysiloxanes are considered one of the most important commercial families of synthetic elastomers. They are frequently employed in biopharmaceutical manufacturing equipment as flexible single-use solutions due to superior material properties and compatibility with diverse sterilization methods. Extractables and leachables (E&L) testing is essential in qualifying such equipment, involving extraction studies to assess the potential release of compounds from plastic components for risk assessment. Silicone releases oligomeric siloxanes and small hydrolysis products, with dimethylsilanediol (DMSD) being the main hydrolysis product found in significant concentrations in aqueous process solutions. DMSD presents challenges for analysis, requiring specifically tailored analytical methods to detect it, which are commonly not applied in standard E&L screening tests. In biopharmaceutical manufacturing, it is relevant to consider the potential of DMSD to repolymerize into silicone oil when specific process parameters are altered. This may lead to interactions with drug ingredients, including proteins, resulting in the formation of aggregates. We synthesized and characterized DMSD using X-ray structure analysis and established an HPLC method with a refractive index detector to investigate the release of DMSD from commercially available silicone tubing used in drug manufacturing following autoclaving and irradiation. Subsequently, we assessed typical biopharmaceutical downstream operations for effectively removing this compound from the process stream.

4.
Int J Pharm ; 634: 122677, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740079

RESUMO

Single-use (SU) devices and assemblies used as manufacturing equipment in the biopharmaceutical industry require comprehensive qualifications. These qualifications include the assessment of compounds released from SU devices in contact with the process fluids, and how these leachable compounds potentially influence process performance, drug product quality, and patient safety. SU suppliers need to provide comprehensive qualification data for several parameters, for both new products and product changes, such as changes in the sterilization process applied to the SU device. The introduction of X-ray irradiation as an alternative to the currently used and established gamma irradiation of SU devices represents a situation where robust data is required to demonstrate equivalency between these two radiation technologies. Here, we present the results of a comprehensive extractables study for three SU components, bags, tubing, and sterilizing grade filters, evaluated after X-ray and gamma-ray irradiation. The selected study conditions were set up to allow a direct comparison of the results from the two sterilization methods, and to allow conclusions to be made on the impact of irradiation type on the polymers and their additives. Orthogonal analytical methods are applied to identify and quantify all organic compounds present. The data package provided here supports risk assessments for application of irradiated SU equipment in biopharmaceutical manufacturing. The formation of reaction products and the fundamental chemical pathways are discussed and found to be independent of the irradiation type. The results demonstrate the equivalency of both irradiation methods for extractables from plastic components used in pharmaceutical and biopharmaceutical manufacturing.


Assuntos
Produtos Biológicos , Humanos , Raios X , Plásticos , Polímeros/química , Compostos Orgânicos , Contaminação de Medicamentos , Embalagem de Medicamentos , Preparações Farmacêuticas
5.
Biotechnol Prog ; 38(1): e3214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541835

RESUMO

The biopharmaceutical industry gains enormous flexibility in production processes by using sterilized preassembled single-use devices. Gamma irradiation is an established sterilization technology that may be restricted in the future by the availability of 60 Co as irradiation source and irradiation capacities. X-ray technology is considered an alternative type of radiation for sterilizing SU equipment. In the context of extractables and leachables-one concern connected with the use of single-use process equipment-the effect of X-ray irradiation on the extractables profile of the materials needs to be compared to established gamma irradiation to qualify this alternative technology. An approach is presented to obtain robust and comprehensive extractables data for materials used in SU devices after sterilization either using X-ray or gamma irradiation. A careful selection of the test items and the test design allows a one-to-one comparison of data obtained from a combination of orthogonal analytical techniques. The extractables of a modern SU film material and the copolyester Tritan™ are evaluated. The data presented allow a risk evaluation on the safety of this new sterilization modality for biopharmaceutical applications. It is demonstrated that the extractables profile of a polymer is not affected by the type of irradiation used for sterilization.


Assuntos
Produtos Biológicos , Polímeros , Esterilização/métodos , Raios X
6.
Front Psychiatry ; 13: 1011181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590640

RESUMO

Soldiers regularly participate in missions abroad and subjectively adapt to this situation. However, they have an increased lifetime cardiovascular risk compared to other occupational groups. To test the hypothesis that foreign deployment results in different stress habituation patterns, we investigated long-term psychological and bio-physiological stress responses to a repeated social stress task in healthy soldiers with and without foreign deployment. Ninety-one female and male soldiers from the BEST study (German armed forces deployment and stress) participated three times in the Trier Social Stress Test for groups (TSST-G) prior to, 6-8 weeks after and 1 year after the mission abroad and were compared to a control group without foreign deployment during the study period. They completed the State-Trait-Anxiety Inventory scale (STAI), the Primary Appraisal Secondary Appraisal questionnaire (PASA) and the Multidimensional Mood State Questionnaire (MDBF). Salivary cortisol and α-amylase, blood pressure, heart rate and heart rate variability were determined. Soldiers showed mental habituation over the three times with a significant decrease after the TSST-G in anxiousness (STAI) and cognitive stress appraisal (PASA), they were calmer and reported better mood (MDBF). Prior to the social stress part, the mood (MDBF) declined significantly. None of the biological and physiological markers showed any adaptation to the TSST-G. Mission abroad did not significantly influence any measured psychobiological marker when compared to soldiers without foreign deployment. Foreign deployment does not result in alterations in psychobiological social stress response patterns over 1 year after mission abroad which indicates that adaptation to acute social stress is highly maintained in healthy soldiers. The discrepancy between subjective perception and objective stress response has numerous clinical implications and should receive more attention.

7.
Pharmaceutics ; 13(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34575485

RESUMO

Suitable ex vivo models are required as predictive tools of oromucosal permeability between in vitro characterizations and in vivo studies in order to support the development of novel intraoral formulations. To counter a lack of clinical relevance and observed method heterogenicity, a standardized, controlled and physiologically relevant ex vivo permeation model was established. This model combined the Kerski diffusion cell, process automation, novel assays for tissue integrity and viability, and sensitive LC-MS/MS analysis. The study aimed to assess the effectiveness of the permeation model in the sublingual formulation development of cyclobenzaprine, a promising agent for the treatment of psychological disorders. A 4.68-fold enhancement was achieved through permeation model-led focused formulation development. Here, findings from the preformulation with regard to pH and microenvironment-modulating excipients proved supportive. Moreover, monitoring of drug metabolism during transmucosal permeation was incorporated into the model. In addition, it was feasible to assess the impact of dosage form alterations under stress conditions, with the detection of a 33.85% lower permeation due to salt disproportionation. Integrating the coherent processes of disintegration, dissolution, permeation, and metabolization within a physiological study design, the model enabled successful formulation development for cyclobenzaprine sublingual tablets and targeted development of patient-oriented drugs for the oral cavity.

8.
Front Mol Biosci ; 8: 660456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124150

RESUMO

The early-life metabolome of the intestinal tract is dynamically influenced by colonization of gut microbiota which in turn is affected by nutrition, i.e. breast milk or formula. A detailed examination of fecal metabolites was performed to investigate the effect of probiotics in formula compared to control formula and breast milk within the first months of life in healthy neonates. A broad metabolomics approach was conceptualized to describe fecal polar and semi-polar metabolites affected by feeding type within the first year of life. Fecal metabolomes were clearly distinct between formula- and breastfed infants, mainly originating from diet and microbial metabolism. Unsaturated fatty acids and human milk oligosaccharides were increased in breastfed, whereas Maillard products were found in feces of formula-fed children. Altered microbial metabolism was represented by bile acids and aromatic amino acid metabolites. Elevated levels of sulfated bile acids were detected in stool samples of breastfed infants, whereas secondary bile acids were increased in formula-fed infants. Microbial co-metabolism was supported by significant correlation between chenodeoxycholic or lithocholic acid and members of Clostridia. Fecal metabolites showed strong inter- and intra-individual behavior with features uniquely present in certain infants and at specific time points. Nevertheless, metabolite profiles converged at the end of the first year, coinciding with solid food introduction.

9.
J Clin Med ; 10(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924268

RESUMO

Accumulation of stress is a prognostic trigger for cardiovascular disease. Classical scores for cardiovascular risk estimation typically do not consider psychosocial stress. The aim of this study was to develop a global stress index (GSI) from healthy participants by combining individual measures of acute and chronic stress from childhood to adult life. One-hundred and ninety-two female and male soldiers completed the Perceived Stress Scale (PSS4), Trier Inventory for Chronic Stress (TICS), Hospital Anxiety and Depression Scale (HADS), Childhood Trauma Questionnaire (CTQ), Posttraumatic Diagnostic Scale Checklist (PDS), and the Deployment Risk and Resilience Inventory (DRRI-2). The underlying structure for the GSI was examined through structural equation modeling. The final hierarchical multilevel model revealed fair fit by taking modification indices into account. The highest order had a g-factor called the GSI. On a second level the latent variables stress, HADS and CTQ were directly loading on the GSI. A third level with the six CTQ subscales was implemented. On the lowest hierarchical level all manifest variables and the DRRI-2/PDS sum scores were located. The presented GSI serves as a valuable and individual stress profile for soldiers and could potentially complement classical cardiovascular risk factors.

10.
Int J Pharm ; 601: 120574, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831487

RESUMO

As part of early drug development, preformulation studies are used to comprehensively explore the properties of new drugs. In particular, this includes the biopharmaceutical characterization and evaluation of impacting factors (e.g. excipients, microenvironmental conditions etc.) by permeation studies. To overcome the limitations of current studies, a novel standardized ex vivo procedure using esophageal mucosa as surrogate has been established successfully and applied to preformulation studies for oromucosal delivery of cyclobenzaprine hydrochloride, a tricyclic muscle relaxant with potential for psychopharmacotherapeutic use. By using the standardized ex vivo permeation process, a twofold enhancement of permeability (0.98 ± 0.16 to 1.96 ± 0.10 * 10-5 cm/s) was observed by adjustment and controlling of microenvironmental pH, empowering a targeted and effective development of sublingual formulations. Predictivity and suitability were superior compared to in vitro experiments using artificial biomimetic membranes, revealing a determination coefficient (R2) of 0.995 vs. 0.322 concerning pH-dependent permeability of cyclobenzaprine. In addition, diffusion properties were extensively examined (e.g. influence of mucosal thicknesses, tissue freezing etc.). The alignment of the study design regarding physiologically/clinically relevant conditions resulted in ex vivo data that allowed for the estimation of plasma AUC levels in the extend of reported in vivo ranges.


Assuntos
Excipientes , Preparações Farmacêuticas , Amitriptilina/análogos & derivados , Permeabilidade
11.
J Clin Med ; 9(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238572

RESUMO

Psychosocial stress increases cardiovascular risk, which coincides with enhanced oxidative DNA damage. Increased sympathetic tone-related catecholamine release causes oxidative stress, which contributes to catecholamine-related cardiotoxicity. Therefore, we tested the hypothesis whether acute psychosocial stress induces oxidative DNA damage, its degree being related to the cardiovascular risk profile and depending on the sympathetic stress response. After assessment of the prospective cardiovascular Münster score (PROCAM) to determine the risk of acute myocardial infarction, 83 male and 12 female healthy volunteers underwent the Trier social stress test for groups (TSST-G). Heart rate variability was quantified by measuring the standard deviation (SDNN) and root mean square of successive differences (RMSSD) between normal-to-normal inter-beat intervals. Salivary α-amylase (sAA) activity was assessed as a surrogate for noradrenaline plasma concentrations. Oxidative DNA damage was determined using whole-blood single-cell gel electrophoresis ("tail moment" in the "comet assay"). A total of 33 subjects presented with a prospective risk of myocardial infarction (risk+) vs. 59 subjects without risk (risk-). The TSST-G stress significantly increased blood pressure, heart rate, and sAA in both groups, while oxidative DNA damage was only increased in the risk+ group. Immediately after the TSST-G, the "tail moment" showed significant inverse linear relations with both SDNN and RMSSD. Acute psychosocial stress may cause oxidative DNA damage, the degree of which is directly related to the individual cardiovascular risk profile and depends on the stress-induced increase in the sympathetic tone.

12.
Anal Bioanal Chem ; 412(19): 4505-4518, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32535801

RESUMO

The inhibiting effect of the secondary phosphite antioxidant degradation product bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP) on cell growth is well-known. The present study describes structurally related compounds which are likely to be formed from similar widely used phosphite antioxidants used in materials for the manufacturing of single-use (SU) equipment. Two potential candidates of such compounds-3,3',5,5'-tetra-tert-butyl-2,2'-dihydroxybiphenylphosphate (TtBBP) and bis(p-nonylphenyl)phosphate (bNPP)-were identified by chromatography and mass spectrometry followed by synthesis and X-ray structure elucidation. Additionally, the formation of TtBBP was confirmed in an analytical degradation study and its migration from SU bioprocessing material was estimated. The cytotoxicity evaluation by means of cell culture spiking experiments and flow cytometry analysis revealed that' even if cell growth was inhibited by all the compounds to some extent, bDtBPP showed the most severe effect and stoods out from the other two degradants investigated. Graphical abstract.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Fosfitos/química , Fosfitos/farmacologia , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Modelos Moleculares , Polienos/química , Polienos/farmacologia
13.
Eur J Pharm Sci ; 143: 105069, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31634555

RESUMO

This article demonstrates, on a quantitative level, that leachables - potentially accumulated during a biopharmaceutical manufacturing process - will be significantly reduced/removed during four key downstream process steps: cell removal using centrifugation or depth filtration, sterile filtration and virus filtration. Eight common leachables model compounds (LMCs) were spiked into typical feed solutions containing buffer and proteins and were analyzed post-processing in the supernatant or filtrates by HPLC-UV. The clearance rates were calculated as the quotient between the scavenged and initially spiked amount of each leachable. High clearance rates were found for hydrophobic LMCs for all investigated downstream operation steps. It is shown that the removal of cells and cell debris from a culture broth reduces the amount of LMCs almost completely after centrifugation or depth filtration. Also, sterilizing-grade and virus filtration provided a high scavenger effect to most of the LMCs. In contrast, only one hydrophilic acid was not significantly scavenged by the described operations. The possibility to include leachables sinks to a process qualification and risk mitigation concept is explained.


Assuntos
Produtos Biológicos , Resíduos/análise , Animais , Células CHO , Separação Celular , Cricetulus , Indústria Farmacêutica , Filtração , Resíduos Industriais , Extração em Fase Sólida , Vírus
14.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042495

RESUMO

Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes, including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of the function of the gut microbiome in digestion, including links between an RS diet and lipid metabolism and novel linkages between specific gut microbes and their metabolites and proteins produced in the gut.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Amido/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dieta/métodos , Humanos , Metabolômica , Proteômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Am J Clin Nutr ; 106(5): 1274-1286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28877893

RESUMO

Background: Early-life colonization of the intestinal tract is a dynamic process influenced by numerous factors. The impact of probiotic-supplemented infant formula on the composition and function of the infant gut microbiota is not well defined.Objective: We sought to determine the effects of a bifidobacteria-containing formula on the healthy human intestinal microbiome during the first year of life.Design: A double-blind, randomized, placebo-controlled study of newborn infants assigned to a standard whey-based formula containing a total of 107 colony-forming units (CFU)/g of Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, B. longum subspecies infantis (intervention), or to a control formula without bifidobacteria (placebo). Breastfed controls were included. Diversity and composition of fecal microbiota were determined by 16S ribosomal RNA gene amplicon sequencing, and metabolite profiles were analyzed by ultrahigh-performance liquid chromatography-mass spectrometry over a period of 2 y.Results: Infants (n = 106) were randomly assigned to either the interventional (n = 48) or placebo (n = 49) group; 9 infants were exclusively breastfed throughout the entire intervention period of 12 mo. Infants exposed to bifidobacteria-supplemented formula showed decreased occurrence of Bacteroides and Blautia spp. associated with changes in lipids and unknown metabolites at month 1. Microbiota and metabolite profiles of intervention and placebo groups converged during the study period, and long-term colonization (24 mo) of the supplemented Bifidobacterium strains was not detected. Significant differences in microbiota and metabolites were detected between infants fed breast milk and those fed formula (P < 0.005) and between infants birthed vaginally and those birthed by cesarean delivery (P < 0.005). No significant differences were observed between infant feeding groups regarding growth, antibiotic uptake, or other health variables (P > 0.05).Conclusion: The supplementation of bifidobacteria to infant diet can modulate the occurrence of specific bacteria and metabolites during early life with no detectable long-term effects. This trial was registered at germanctr.de as DRKS00003660.


Assuntos
Bifidobacterium , Fezes/microbiologia , Microbioma Gastrointestinal , Metaboloma , Probióticos/administração & dosagem , Aleitamento Materno , Método Duplo-Cego , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Humanos , Lactente , Fórmulas Infantis/química , Fórmulas Infantis/microbiologia , Recém-Nascido , Intestinos/microbiologia , Masculino , Leite Humano/química , Oligossacarídeos/análise , RNA Ribossômico 18S/isolamento & purificação , Análise de Sequência de DNA
16.
Epileptic Disord ; 19(1): 109-113, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28246063

RESUMO

Bupropion, an amphetamine-like dual mechanism drug, is approved and increasingly used for the treatment of major depression, and its use is associated with a dose-dependent risk of epileptic seizures. Suicide attempts are frequent in major depression and often an overdose of the drugs available is ingested. Therefore, it is important to be aware of the clinical course, including EEG and neurological symptoms, as well as treatment and prognosis of bupropion intoxication. We report on the clinical and EEG course of a women who ingested 27 g of bupropion in a suicide attempt. Myoclonic seizures were followed by generalized tonic-clonic seizures and coma associated with EEG burst-suppression and brief tonic seizures. Active carbon and neuro-intensive care treatment, including respiratory support, were given. Within three days, the patient returned to a stable clinical condition with a mildly encephalopathic EEG. In conclusion, bupropion intoxication requires acute intensive care treatment and usually has a good prognosis, however, misinterpretation of the clinical and EEG presentation may lead to errors in management.


Assuntos
Bupropiona/toxicidade , Coma/induzido quimicamente , Transtorno Depressivo Maior/tratamento farmacológico , Eletroencefalografia/efeitos dos fármacos , Epilepsia/induzido quimicamente , Tentativa de Suicídio , Coma/terapia , Epilepsia/terapia , Feminino , Humanos , Pessoa de Meia-Idade
17.
Thorac Cardiovasc Surg Rep ; 5(1): 4-7, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28018810

RESUMO

Dilational tracheotomy is a minimally invasive method that can be performed at the bedside on patients requiring long-term mechanical ventilation. In our 70-year-old male patient, percutaneous dilational tracheotomy (Ciaglia Blue Rhino, Cook Medical Inc., Bloomington, Indiana, United States) was performed because of bilateral pneumonia with sepsis. There were no initial problems. Nine days later, while the patient was being repositioned, the tracheal cannula became dislocated. Despite extending the cervical incision it was not possible to recannulate. The tracheal hole could not be felt with certainty by palpating through the incision. After several unsuccessful attempts, the patient was intubated orally. The only way to achieve sufficient ventilation was to hold the tracheostoma closed. Bronchoscopy showed that the entry point of the tracheal cannula was ventral and ∼1.5 cm above the main carina. The tube was then advanced into the right main bronchus and the patient was thus ventilated unilaterally. On exposure of the trachea, a grade 3 goiter was revealed. Total neck length was short. Only after the video mediastinoscope had been inserted was it possible to show the tracheal defect below the brachiocephalic trunk. After blunt mobilization of both main bronchi, it was possible to close the tracheal defect with simple interrupted sutures. Conventional tracheotomy was then performed at the level of the second tracheal ring. As a result, mechanical ventilation was once again possible without difficulty and thoracotomy was not necessary.

18.
Methods Mol Biol ; 1483: 437-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27645748

RESUMO

Metabolomics is an analytical toolbox to describe (all) low-molecular-weight compounds in a biological system, as cells, tissues, urine, and feces, as well as in serum and plasma. To analyze such complex biological samples, high requirements on the analytical technique are needed due to the high variation in compound physico-chemistry (cholesterol derivatives, amino acids, fatty acids as SCFA, MCFA, or LCFA, or pathway-related metabolites belonging to each individual organism) and concentration dynamic range. All main separation techniques (LC-MS, GC-MS) are applied in routine to metabolomics hyphenated or not to mass spectrometry, and capillary electrophoresis is a powerful high-resolving technique but still underused in this field of complex samples. Metabolomics can be performed in the non-targeted way to gain an overview on metabolite profiles in biological samples. Targeted metabolomics is applied to analyze quantitatively pre-selected metabolites. This chapter reviews the use of capillary electrophoresis in the field of metabolomics and exemplifies solutions in metabolite profiling and analysis in urine and plasma.


Assuntos
Aminoácidos/isolamento & purificação , Eletroforese Capilar/métodos , Metabolômica/métodos , Soro/química , Aminoácidos/química , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Soro/metabolismo
20.
Int J Med Microbiol ; 306(5): 266-279, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27012595

RESUMO

The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.


Assuntos
Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Metabolômica/métodos , Microbiota , Animais , Modelos Animais de Doenças , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA