Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1333534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414501

RESUMO

Background: Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by impaired social interaction and communication and the occurrence of stereotyped and repetitive behaviors. Several studies have reported altered cytokine profiles in ASD and hence may serve as potential diagnostic biomarkers of the disorder. This study aims to identify diagnostic biomarkers for ASD in a well-defined study cohort in Qatar. Methods: We measured the protein levels of 45 cytokines in the plasma samples of age- and gender-matched children (2-4 years) with ASD (n = 100) and controls (n = 60) using a Luminex multiplex assay. We compared the differences in the levels of these cytokines between the two study groups and then fitted the significantly altered cytokines into a logistic regression model to examine their diagnostic potential for ASD. Results: We found elevated levels of IFN-γ, FGF-2, IL-1RA, and IL-13 and reduced levels of eotaxin, HGF, IL-1 alpha, IL-22, IL-9, MCP-1, SCF, SDF-1 alpha, VEGFA, and IP-10 in the plasma of children with ASD compared to controls. Furthermore, we observed that elevated levels of IFN-γ (odds ratio (OR) = 1.823; 95% (confidence interval) CI = 1.206, 2.755; p = 0.004) and FGF-2 (OR = 2.528; 95% CI = 1.457, 4.385; p < 0.001) were significantly associated with increased odds of ASD, whereas reduced levels of eotaxin (OR = 0.350; 95% CI = 0.160, 0.765; p = 0.008) and HGF (OR = 0.220; 95% CI = 0.070, 0.696; p = 0.010) were significantly associated with lower odds of ASD relative to controls. The combination of these four cytokines revealed an area under the curve (ROC-AUC) of 0.829 (95% CI = 0.767, 0.891; p < 0.001), which demonstrates the diagnostic accuracy of the four-cytokine signature. Conclusions: Our results identified a panel of cytokines that could discriminate between children with ASD and controls in Qatar. In addition, our findings support the predominance of a Th1 immune phenotype in ASD children and emphasize the need to validate these results in larger populations.

2.
Mol Biol Rep ; 47(4): 2713-2722, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32185687

RESUMO

Neural cell transplantation is an effective way for treatment of neurological diseases. However, the absence of transplantable human neurons remains a barrier for clinical therapies. Human urine-derived cells, namely renal cells and urine stem cells, have become a good source of cells for reprogramming or trans-differentiation research. Here, we show that human urine-derived cells can be partially converted into neuron-like cells by applying a cocktail of small molecules. Gene expression analysis has shown that these induced cells expressed some neuron-specific genes, and a proportion of the cells are GABAergic neurons. Moreover, whole-cell patch clamping recording has shown that some induced cells have neuron-specific voltage gated Na+ and K+ currents but have failed to generate Ca2+ currents and action potentials. Taken together, these results suggest that induced neuronal cells from human urine-derived cells may be useful for neurological disease modelling, drug screening and cell therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Urina/citologia , Potenciais de Ação/efeitos dos fármacos , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/metabolismo , Neurônios/patologia , Técnicas de Patch-Clamp
3.
Stem Cell Res Ther ; 9(1): 222, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134974

RESUMO

The original article [1] contained a small typo affecting the co-author, Mohammed Al-Hawwas's name. This error has now been corrected.

4.
Brain Res ; 1668: 46-55, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28528122

RESUMO

ProBDNF, a precursor of brain-derived neurotrophic factor (BDNF), is an important regulator of neurodegeneration, hippocampal long-term depression, and synaptic plasticity. ProBDNF and its receptors pan-neurotrophin receptor p75 (p75NTR), vps10p domain-containing receptor Sortilin and tropomyosin receptor kinase B (TrkB) are expressed in neuronal and glial cells. The role of proBDNF in regulation of neurogenesis is not fully defined. This study aims to uncover the function of proBDNF in regulating the differentiation, migration and proliferation of mouse neural stem cells (NSCs) in vitro. We have found that proBDNF and its receptors are constitutively expressed in NSCs when assessed by immunocytochemistry and western blotting. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay showed that exogenous proBDNF treatment reduced mouse NSCs viability by 38% at 10ng/mL. The migration of NSCs was also reduced by exogenous proBDNF treatment in a concentration-dependent manner (by 90% at 10ng/mL) but increased by anti-proBDNF antibody treatment (by 50%). BrdU (5-Bromo-2'-Deoxyuridine) incorporation was performed for detection of newborn cells. We have found that proBDNF significantly inhibited proliferation of NSCs and reduced the number of differentiated neurons, oligodendrocytes and astrocytes, while anti-proBDNF antibody treatment promoted proliferation and differentiation of NSCs. In conclusion, proBDNF may oppose the functions of mature BDNF by inhibiting the proliferation, differentiation and migration of NSCs during development. Conversely, anti-proBDNF antibody treatment promoted proliferation and differentiation of NSCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células-Tronco Neurais/citologia , Proteínas Adaptadoras de Transporte Vesicular/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/citologia , Precursores de Proteínas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA