Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pharmaceutics ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297685

RESUMO

Intrinsic aqueous solubility is a foundational property for understanding the chemical, technological, pharmaceutical, and environmental behavior of drug substances. Despite years of solubility research, molecular structure-based prediction of the intrinsic aqueous solubility of drug substances is still under active investigation. This paper describes the authors' systematic data-driven modelling in which two fit-for-purpose training data sets for intrinsic aqueous solubility were collected and curated, and three quantitative structure-property relationships were derived to make predictions for the most recent solubility challenge. All three models perform well individually, while being mechanistically transparent and easy to understand. Molecular descriptors involved in the models are related to the following key steps in the solubility process: dissociation of the molecule from the crystal, formation of a cavity in the solvent, and insertion of the molecule into the solvent. A consensus modeling approach with these models remarkably improved prediction capability and reduced the number of strong outliers by more than two times. The performance and outliers of the second solubility challenge predictions were analyzed retrospectively. All developed models have been published in the QsarDB.org repository according to FAIR principles and can be used without restrictions for exploring, downloading, and making predictions.

2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886881

RESUMO

Ionic liquids (ILs) are known for their unique characteristics as solvents and electrolytes. Therefore, new ILs are being developed and adapted as innovative chemical environments for different applications in which their properties need to be understood on a molecular level. Computational data-driven methods provide means for understanding of properties at molecular level, and quantitative structure-property relationships (QSPRs) provide the framework for this. This framework is commonly used to study the properties of molecules in ILs as an environment. The opposite situation where the property is considered as a function of the ionic liquid does not exist. The aim of the present study was to supplement this perspective with new knowledge and to develop QSPRs that would allow the understanding of molecular interactions in ionic liquids based on the structure of the cationic moiety. A wide range of applications in electrochemistry, separation and extraction chemistry depends on the partitioning of solutes between the ionic liquid and the surrounding environment that is characterized by the gas-ionic liquid partition coefficient. To model this property as a function of the structure of a cationic counterpart, a series of ionic liquids was selected with a common bis-(trifluoromethylsulfonyl)-imide anion, [Tf2N]-, for benzene, hexane and cyclohexane. MLR, SVR and GPR machine learning approaches were used to derive data-driven models and their performance was compared. The cross-validation coefficients of determination in the range 0.71-0.93 along with other performance statistics indicated a strong accuracy of models for all data series and machine learning methods. The analysis and interpretation of descriptors revealed that generally higher lipophilicity and dispersion interaction capability, and lower polarity in the cations induces a higher partition coefficient for benzene, hexane, cyclohexane and hydrocarbons in general. The applicability domain analysis of models concluded that there were no highly influential outliers and the models are applicable to a wide selection of cation families with variable size, polarity and aliphatic or aromatic nature.


Assuntos
Líquidos Iônicos , Benzeno , Cátions , Cicloexanos , Hexanos , Humanos , Hidrocarbonetos , Líquidos Iônicos/química , Aprendizado de Máquina
3.
Org Biomol Chem ; 20(23): 4724-4735, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35612321

RESUMO

Research on human milk oligosaccharides (HMOs) has increased over the past decade showing great interest in their beneficial effects. Here we describe a method for the selective deacetylation using immobilised Candida antarctica lipase-B, Novozyme N435 (N435), of pyranose saccharides in organic media with the aim of simplifying and improving the pathways for the synthesis of HMOs. By first studying in depth the deacetylation reaction of peracetylated D-glucose two reaction conditions were found, which were used on different HMO building blocks, peracetylated saccharides and thioglycosides. D-Glucose based saccharides showed selectivity towards the fourth and the sixth position deacetylation. While α-anomer of peracetylated D-galactose remained unreactive and ß-anomer favoured the first position deacetylation. Peracetylated L-fucose, on the other hand, had no selectivity as the main product was fully unprotected L-fucose. Taking the peracetylated D-glucose deacetylation reaction product and selectively protecting the primary hydroxyl group in the sixth position left only the fourth position open for the glycosylation. Meanwhile, the deacetylation product of D-galactose thioglycoside, with the sixth position deacetylated, had both acceptor and donor capabilities. Using the two aforementioned products derived from the N435 deacetylation reactions a deviant HMO, 6'-galactosyllactose (6'-GL) was synthesised.


Assuntos
Fucose , Lactose/metabolismo , Leite Humano , Basidiomycota , Carboidratos , Galactose , Glucose , Humanos , Lipase , Oligossacarídeos
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206613

RESUMO

Many chemicals that enter the environment, food chain, and the human body can disrupt androgen-dependent pathways and mimic hormones and therefore, may be responsible for multiple diseases from reproductive to tumor. Thus, modeling and predicting androgen receptor activity is an important area of research. The aim of the current study was to find a method or combination of methods to predict compounds that can bind to and/or disrupt the androgen receptor, and thereby guide decision making and further analysis. A stepwise procedure proceeded from analysis of protein structures from human, chimp, and rat, followed by docking and subsequent ligand, and statistics based techniques that improved classification gradually. The best methods used multivariate logistic regression of combinations of chimpanzee protein structural docking scores, extended connectivity fingerprints, and naïve Bayesians of known binders and non-binders. Combination or consensus methods included data from a variety of procedures to improve the final model accuracy.


Assuntos
Teorema de Bayes , Disruptores Endócrinos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Androgênicos/química , Disruptores Endócrinos/metabolismo , Humanos , Ligantes , Modelos Logísticos , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Curva ROC , Receptores Androgênicos/metabolismo , Reprodutibilidade dos Testes
5.
Bioorg Med Chem ; 33: 116043, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33530021

RESUMO

The processes preceding the detachment of cytochrome c (cyt c) from the inner mitochondrial membrane in intrinsic apoptosis involve peroxidation of cardiolipin (CL) catalyzed by cyt c-CL complex. In the present work, we studied the effect of 17 dietary flavonoids on the peroxidase activity of cyt c bound to liposomes. Specifically, we explored the relationship between peroxidase activity and flavonoids' (1) potential to modulate cyt c unfolding, (2) effect on the oxidation state of heme iron, (3) membrane permeability, (4) membrane binding energy, and (5) structure. The measurements revealed that flavones, flavonols, and flavanols were the strongest, while isoflavones were the weakest inhibitors of the oxidation. Flavonoids' peroxidase inhibition activity correlated positively with their potential to suppress Trp-59 fluorescence in cyt c as well as the number of OH groups. Hydrophilic flavonoids, such as catechin, having the lowest membrane permeability and the strongest binding with phosphocholine (PC) based on the quantum chemical calculations exhibited the strongest inhibition of Amplex Red (AR) peroxidation, suggesting a membrane-protective function of flavonoids at the surface. The results of the present research specify basic principles for the design of molecules that will control the catalytic oxidation of lipids in mitochondrial membranes. These principles take into account the number of hydroxyl groups and hydrophilicity of flavonoids.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Cardiolipinas/química , Citocromos c/química , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavonoides/química , Humanos , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
6.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-37842337

RESUMO

Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.


Assuntos
Disciplinas das Ciências Biológicas , Europa (Continente) , Medição de Risco
7.
Chemosphere ; 262: 128313, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182081

RESUMO

Androgens and androgen receptor regulate a variety of biological effects in the human body. The impaired functioning of androgen receptor may have different adverse health effects from cancer to infertility. Therefore, it is important to determine whether new chemicals have any binding activity and act as androgen agonists or antagonists before commercial use. Due to the large number of chemicals that require experimental testing, the computational methods are a viable alternative. Therefore, the aim of the present study was to develop predictive QSAR models for classifying compounds according to their activity at the androgen receptor. A large data set of chemicals from the CoMPARA project was used for this purpose and random forest classification models have been developed for androgen binding, agonistic, and antagonistic activity. In addition, a unique effort has been made for multi-class approach that discriminates between inactive compounds, agonists and antagonists simultaneously. For the evaluation set, the classification models predicted agonists with 80% of accuracy and for the antagonists' and binders' the respective metrics were 72% and 78%. Combining agonists, antagonists and inactive compounds into a multi-class approach added complexity to the modelling task and resulted to 64% prediction accuracy for the evaluation set. Considering the size of the training data sets and their imbalance, the achieved evaluation accuracy is very good. The final classification models are available for exploring and predicting at QsarDB repository (https://doi.org/10.15152/QDB.236).


Assuntos
Antagonistas de Receptores de Andrógenos/classificação , Androgênios/classificação , Modelos Químicos , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/química , Androgênios/farmacologia , Humanos , Aprendizado de Máquina , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
8.
Environ Health Perspect ; 128(2): 27002, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32074470

RESUMO

BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays. RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of ∼875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580.


Assuntos
Simulação por Computador , Disruptores Endócrinos , Androgênios , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Humanos , Receptores Androgênicos , Estados Unidos , United States Environmental Protection Agency
9.
J Chem Inf Model ; 59(5): 2442-2455, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30790522

RESUMO

Permeability is used to describe and evaluate the absorption of drug substances in the human gastrointestinal tract (GIT). Permeability is largely dependent on fluctuating pH that causes the ionization of drug substances and also influences regional absorption in the GIT. Therefore, classification models that characterize permeability at wide ranges of pH were derived in the current study. For this, drug substances were described with six data series that were measured with a parallel artificial membrane permeability assay (PAMPA), including a permeability profile at four pH values (3, 5, 7.4, and 9), and the highest and intrinsic membrane permeability. Logistic regression classification models were developed and compared by using two distinct sets of descriptors: (1) a hydrophobicity descriptor, the logarithm of the octanol-water partition (logPow) or distribution (logD) coefficient and (2) theoretical molecular descriptors. In both cases, models have good classification and descriptive capabilities for the training set (accuracy: 0.76-0.91). Triple validation with three sets of drug substances shows good prediction capability for all models: validation set (accuracy: 0.73-0.91), external validation set (accuracy: 0.72-0.9), and the permeability classes of FDA reference drugs for the biopharmaceutical classification system (BCS) (accuracy: 0.72-0.88). The identification of BCS permeability classes was further improved with decision trees that consolidated predictions from models with each descriptor type. These decision trees have higher confidence and accuracy (0.91 for theoretical molecular descriptors and 0.81 for hydrophobicity descriptors) than the individual models in assigning drug substances into BCS permeability classes. A detailed analysis of classification models and related decision trees suggests that they are suitable for predicting classes of permeability for passively transported drug substances, including specifically within the BCS framework. All developed models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.206 ).


Assuntos
Permeabilidade da Membrana Celular , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Logísticos
10.
Environ Health Perspect ; 126(12): 126001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30561225

RESUMO

BACKGROUND: Quantitative and qualitative structure­activity relationships (QSARs) have been used to understand chemical behavior for almost a century. The main source of QSAR models is the scientific literature, but the open question is how well these models are documented. OBJECTIVES: The main aim of this study was to critically analyze the publication practices of QSARs with regard to transparency, potential reproducibility, and independent verification. The focus was on the level of technical completeness of the published QSARs. METHODS: A total of 1,533 QSAR articles reporting 79 individual endpoints, mostly in environmental and health science, were reviewed. The QSAR parameters required for technical completeness were grouped into five categories: chemical structures, experimental endpoint values, descriptor values, mathematical representation of the model, and predicted endpoint values. The data were summarized and discussed using Circos plots. RESULTS: Altogether, 42.5% of the reviewed articles were found to be potentially reproducible. The potential reproducibility for different endpoint groups varied; the respective rates were 39% for physical and chemical properties, 52% for ecotoxicity, 56% for environmental fate, 30% for human health, and 32% for toxicokinetics. The reproducibility of QSARs is discussed and placed in the context of the reproducibility of the experimental methods. Included are 65 references to open QSAR datasets as examples of models restored from scientific articles. DISCUSSION: Strikingly poor documentation of QSARs was observed, which reduces the transparency, availability, and consequently, the application of research results in scientific, industrial, and regulatory areas. A list of the components needed to ensure the best practices for QSAR reporting is provided, allowing long-term use and preservation of the models. This list also allows an assessment of the reproducibility of models by interested parties such as journal editors, reviewers, regulators, evaluators, and potential users. https://doi.org/10.1289/EHP3264.


Assuntos
Modelos Teóricos , Relação Quantitativa Estrutura-Atividade , Fenômenos Químicos , Ecotoxicologia/métodos , Exposição Ambiental , Humanos , Reprodutibilidade dos Testes , Toxicocinética
11.
Eur J Pharm Sci ; 123: 429-440, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100533

RESUMO

The influence of pH on human intestinal absorption is frequently not considered in early drug discovery studies in the modelling and subsequent prediction of intestinal absorption for drug candidates. To bridge this gap, in this study, experimental membrane permeability data were measured for current and former drug substances with a parallel artificial membrane permeability assay (PAMPA) at different pH values (3, 5, 7.4 and 9). The presented data are in good agreement with human intestinal absorption, showing a clear influence of pH on the efficiency of intestinal absorption. For the measured data, simple and general quantitative structure-activity relationships (QSARs) were developed for each pH that makes it possible to predict the pH profiles for passive membrane permeability (i.e., a pH-permeability profile), and these predictions coincide well with the experimental data. QSARs are also proposed for the data series of highest and intrinsic membrane permeability. The molecular descriptors in the models were analysed and mechanistically related to the interaction pattern of permeability in membranes. In addition to the regression models, classification models are also proposed. All models were successfully validated and blind tested with external data. The models are available in the QsarDB repository (http://dx.doi.org/10.15152/QDB.203).


Assuntos
Permeabilidade da Membrana Celular , Absorção Intestinal , Membranas Artificiais , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Preparações Farmacêuticas/classificação , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
12.
J Mol Graph Model ; 76: 205-223, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28738270

RESUMO

Human immunodeficiency virus (HIV-1) reverse transcriptase is a major target for designing anti-HIV drugs. Developed inhibitors are divided into non-nucleoside analog reverse-transcriptase inhibitors (NNRTIs) and nucleoside analog reverse-transcriptase inhibitors (NRTIs) depending on their mechanism. Given that many inhibitors have been studied and for many of them binding affinity constants have been calculated, it is beneficial to analyze the chemical landscape of these families of inhibitors and correlate these inhibition constants with molecular structure descriptors. For this, the HIV-1 RT data was retrieved from the ChEMBL database, carefully curated, and original literature verified, grouped into NRTIs and NNRTIs, analyzed using a hierarchical scaffold classification method and modelled with best multi-linear regression approach. Analysis of the HIV-1 NNRTIs subset results in ten different common structural parent types of oxazepanone, piperazinone, pyrazine, oxazinanone, diazinanone, pyridine, pyrrole, diazepanone, thiazole, and triazine. The same analysis for HIV-1 NRTIs groups structures into four different parent types of uracil, pyrimide, pyrimidione, and imidazole. Each scaffold tree corresponding to the parent types has been carefully analyzed and examined, and changes in chemical structure favorable to potency and stability are highlighted. For both subsets, descriptive and predictive QSAR models are derived, discussed and externally validated, revealing general trends in relationships between molecular structure and binding affinity constants in structurally diverse datasets. Data and QSAR models are available at the QsarDB repository (http://dx.doi.org/10.15152/QDB.202).


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
13.
J Comput Aided Mol Des ; 31(5): 441-451, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28374255

RESUMO

Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including ~3000 molecules tested in one or several of 17 anti-Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.


Assuntos
Antimaláricos/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Bases de Dados Factuais , Desenho de Fármacos , Humanos , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
14.
Mol Inform ; 36(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27778468

RESUMO

Thousands of (Quantitative) Structure-Activity Relationships (Q)SAR models have been described in peer-reviewed publications; however, this way of sharing seldom makes models available for the use by the research community outside of the developer's laboratory. Conversely, on-line models allow broad dissemination and application representing the most effective way of sharing the scientific knowledge. Approaches for sharing and providing on-line access to models range from web services created by individual users and laboratories to integrated modeling environments and model repositories. This emerging transition from the descriptive and informative, but "static", and for the most part, non-executable print format to interactive, transparent and functional delivery of "living" models is expected to have a transformative effect on modern experimental research in areas of scientific and regulatory use of (Q)SAR models.


Assuntos
Modelos Teóricos , Relação Quantitativa Estrutura-Atividade , Bases de Dados Factuais , Internet
15.
PLoS Biol ; 14(12): e2000322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923039

RESUMO

Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)-a central node in guard cell CO2 signaling-and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Variação Genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Ozônio/metabolismo , Fotossíntese , Locos de Características Quantitativas , Água
16.
SAR QSAR Environ Res ; 27(10): 813-832, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27748631

RESUMO

Human intestinal absorption is a key property for orally administered drugs and is dependent on pH. This study focuses on neutral and amphoteric compounds and their membrane permeabilities across the range of pH values found in the human intestine. The membrane permeability values for 15 neutral and 60 amphoteric compounds at pH 3, 5, 7.4 and 9 were measured using the parallel artificial membrane permeability assay (PAMPA). For each data series the quantitative structure-permeability relationships were developed and analysed. The results show that the membrane permeability of neutral compounds is attributed to a single structural characteristic, the hydrogen bond donor ability. Amphoteric compounds are more complex because of their chemical constitution, and therefore require three-parameter models to describe and predict membrane permeability. Analysis of the models for amphoteric compounds reveals that membrane permeability depends on multiple structural characteristics: the partition coefficient, hydrogen bond properties and the shape of the molecules. In addition to conventional validation strategies, two external compounds (isradipine and omeprazole) were tested and revealed very good agreement of pH profiles between experimental and predicted membrane permeability for all of the developed models. Selected QSAR models are available at the QsarDB repository (http://dx.doi.org/10.15152/QDB.184).

17.
Molecules ; 21(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27367660

RESUMO

Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Simulação por Computador , Mineração de Dados , Desenho de Fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Quantitativa Estrutura-Atividade , Curcuma/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos
18.
Bioorg Med Chem ; 24(11): 2519-29, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27108399

RESUMO

A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1µM and 0.16±0.05µM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency.


Assuntos
Fármacos Anti-HIV/farmacologia , Descoberta de Drogas , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Triazinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Células Cultivadas , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
19.
Mol Inform ; 34(6-7): 493-506, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-27490393

RESUMO

In silico models for membrane permeability have been based on values measured for single pH. Depending on the diet (fasted/fed state) and part of human intestine the range of pH varies approximately from 2.4 to 8.0. This motivated to study and model the membrane permeability of chemicals considering the whole range of pH in the human intestine. For this, effective membrane permeability values were measured for 65 drugs and drug-like compounds using PAMPA method at four pHs (3, 5, 7.4, 9) over 48 h, introducing technological innovations for the time-dependence measurement. The highest permeability value of a compound from four pHs was used to derive QSAR analyzing a large pool of molecular descriptors and introducing new descriptor. Using stepwise forward selection approach a significant QSAR model was derived that included only two mechanistically relevant descriptors, the logarithmic octanol-water partition coefficient and hydrogen bonding surface area. Prediction confidence of the model was blind tested with a true external validation set of 15 compounds. The resulting QSAR model shows potential to combine permeability values from various pH-s into one descriptive and predictive model for estimating maximum permeability in human gastrointestinal tract. The QSAR model and data are available through the QsarDB repository (http://dx.doi.org/10.15152/QDB.137).


Assuntos
Mucosa Intestinal/metabolismo , Membranas Artificiais , Modelos Biológicos , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade
20.
J Chem Inf Model ; 54(11): 3172-85, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25303089

RESUMO

A delicate balance exists between a drug molecule's toxicity and its activity. Indeed, efficacy, toxicity, and side effect problems are a common cause for the termination of drug candidate compounds and development projects. To address this, an antitarget interaction profile is built and combined with virtual screening and cross docking for new inhibitors of HIV-1 integrase, in order to consider possible off-target interactions as early as possible in a drug or hit discovery program. New ranking techniques using triangular numbers improve ranking information on the compounds and recovery of known inhibitors into the top compounds using different docking programs. This improved ranking arises from using consensus of ranks between docking programs and ligand efficiencies to derive a new rank, instead of using absolute score values, or average of ranks. The triangular number rerank also allowed the objective combination of results from several protein targets or screen conditions and several programs. Triangular number reranking conserves more information than other reranking methods such as average of scores or averages of ranks. In addition, the use of triangular numbers for reranking makes possible the use of thresholds with a justified leeway based on the number of available known inhibitors, so that the majority of the compounds above the threshold in ranks compare to the compounds that have known experimentally determined biological activity. The battery of anti- or off-targets can be tailored to specific molecular or drug design challenges. In silico filters can thus be deployed in successive stages, for prefiltering, activity profiling, and for further analysis and triaging of libraries of compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Integrase de HIV/química , Inibidores de Integrase de HIV/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA