Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Eur J Cell Biol ; 103(2): 151398, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368729

RESUMO

Naringenin (NRG) was characterized for its ability to counteract mitochondrial dysfunction which is linked to cardiovascular diseases. The F1FO-ATPase can act as a molecular target of NRG. The interaction of NRG with this enzyme can avoid the energy transmission mechanism of ATP hydrolysis, especially in the presence of Ca2+ cation used as cofactor. Indeed, NRG was a selective inhibitor of the hydrophilic F1 domain displaying a binding site overlapped with quercetin in the inside surface of an annulus made by the three α and the three ß subunits arranged alternatively in a hexamer. The kinetic constant of inhibition suggested that NRG preferred the enzyme activated by Ca2+ rather than the F1FO-ATPase activated by the natural cofactor Mg2+. From the inhibition type mechanism of NRG stemmed the possibility to speculate that NRG can prevent the activation of F1FO-ATPase by Ca2+. The event correlated to the protective role in the mitochondrial permeability transition pore opening by NRG as well as to the reduction of ROS production probably linked to the NRG chemical structure with antioxidant action. Moreover, in primary cerebral endothelial cells (ECs) obtained from stroke prone spontaneously hypertensive rats NRG had a protective effect on salt-induced injury by restoring cell viability and endothelial cell tube formation while also rescuing complex I activity.

2.
Cell Calcium ; 113: 102759, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210868

RESUMO

Multiple forms of regulated cell death (RCD) have been characterized, each of which originates from the activation of a dedicated molecular machinery. RCD can occur in purely physiological settings or upon failing cellular adaptation to stress. Ca2+ions have been shown to physically interact with - and hence regulate - various components of the RCD machinery. Moreover, intracellular Ca2+ accumulation can promote organellar dysfunction to degree that can be overtly cytotoxic or sensitize cells to RCD elicited by other stressors. Here, we provide an overview of the main links between Ca2+and different forms of RCD, including apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, lysosome-dependent cell death, and parthanatos.


Assuntos
Apoptose , Transdução de Sinais , Humanos , Morte Celular , Lisossomos/metabolismo , Necrose/metabolismo
3.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821088

RESUMO

The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Fosfolipídeos , Sinaptotagmina I , eIF-2 Quinase , Humanos , Transporte Biológico , eIF-2 Quinase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Sinaptotagmina I/metabolismo , Membranas Mitocondriais/metabolismo
4.
Pharmacol Res ; 187: 106561, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410676

RESUMO

The compromised viability and function of cardiovascular cells are rescued by small molecules of triazole derivatives (Tzs), identified as 3a and 3b, by preventing mitochondrial dysfunction. The oxidative phosphorylation improves the respiratory control rate in the presence of Tzs independently of the substrates that energize the mitochondria. The F1FO-ATPase, the main candidate in mitochondrial permeability transition pore (mPTP) formation, is the biological target of Tzs and hydrophilic F1 domain of the enzyme is depicted as the binding region of Tzs. The protective effect of Tz molecules on isolated mitochondria was corroborated by immortalized cardiomyocytes results. Indeed, mPTP opening was attenuated in response to ionomycin. Consequently, increased mitochondrial roundness and reduction of both length and interconnections between mitochondria. In in-vitro and ex-vivo models of cardiovascular pathologies (i.e., hypoxia-reoxygenation and hypertension) were used to evaluate the Tzs cardioprotective action. Key parameters of porcine aortic endothelial cells (pAECs) oxidative metabolism and cell viability were not affected by Tzs. However, in the presence of either 1 µM 3a or 0.5 µM 3b the impaired cell metabolism of pAECs injured by hypoxia-reoxygenation was restored to control respiratory profile. Moreover, endothelial cells isolated from SHRSP exposed to high-salt treatment rescued the Complex I activity and the endothelial capability to form vessel-like tubes and vascular function in presence of Tzs. As a result, the specific biochemical mechanism of Tzs to block Ca2+-activated F1FO-ATPase protected cell viability and preserved the pAECs bioenergetic metabolism upon hypoxia-reoxygenation injury. Moreover, SHRSP improved vascular dysfunction in response to a high-salt treatment.


Assuntos
Doenças Cardiovasculares , Proteínas de Transporte da Membrana Mitocondrial , Animais , Suínos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Hipóxia/metabolismo
5.
Cell Death Differ ; 30(2): 429-441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450825

RESUMO

Uncontrolled inflammatory response arising from the tumor microenvironment (TME) significantly contributes to cancer progression, prompting an investigation and careful evaluation of counter-regulatory mechanisms. We identified a trimeric complex at the mitochondria-associated membranes (MAMs), in which the purinergic P2X7 receptor - NLRP3 inflammasome liaison is fine-tuned by the tumor suppressor PML. PML downregulation drives an exacerbated immune response due to a loss of P2X7R-NLRP3 restraint that boosts tumor growth. PML mislocalization from MAMs elicits an uncontrolled NLRP3 activation, and consequent cytokines blast fueling cancer and worsening the tumor prognosis in different human cancers. New mechanistic insights are provided for the PML-P2X7R-NLRP3 axis to govern the TME in human carcinogenesis, fostering new targeted therapeutic approaches.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína da Leucemia Promielocítica , Receptores Purinérgicos P2X7 , Microambiente Tumoral , Humanos , Citocinas , Inflamassomos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/metabolismo , Proteína da Leucemia Promielocítica/metabolismo
6.
Nat Rev Immunol ; 23(3): 159-173, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35879417

RESUMO

Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Mitocôndrias/metabolismo , Inflamação/patologia , Alarminas , Neoplasias/patologia
7.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32789789

RESUMO

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Neoplasias , Humanos , Sinalização do Cálcio/fisiologia , Mitocôndrias , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Morte Celular , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Neoplasias/metabolismo
8.
Cell Rep ; 40(3): 111124, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858578

RESUMO

Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy.


Assuntos
Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Homeostase , Humanos , Mitocôndrias/genética , Mitofagia/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia
9.
Cell Death Differ ; 29(7): 1301-1303, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831625

Assuntos
Mitocôndrias
10.
Biofactors ; 48(5): 1089-1110, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661288

RESUMO

Bone homeostasis is the equilibrium between organic and inorganic components of the extracellular matrix (ECM) and cells. Alteration of this balance has consequences on bone mass and architecture, resulting in conditions such as osteoporosis (OP). Given ECM protein mutual regulation and their effects on bone structure and mineralization, further insight into their expression is crucial to understanding bone biology under normal and pathological conditions. This study focused on Type I Collagen, which is mainly responsible for structural properties and mineralization of bone, and selected proteins implicated in matrix composition, mineral deposition, and cell-matrix interaction such as Decorin, Osteocalcin, Osteopontin, Bone Sialoprotein 2, Osteonectin and Transforming Growth Factor beta. We developed a novel multidisciplinary approach in order to assess bone matrix in healthy and OP conditions more comprehensively by exploiting the Fourier Transform Infrared Imaging (FTIRI) technique combined with histomorphometry, Sirius Red staining, immunohistochemistry, and Western Blotting. This innovatory procedure allowed for the analysis of superimposed tissue sections and revealed that the alterations in OP bone tissue architecture were associated with warped Type I Collagen structure and deposition but not with changes in the total protein amount. The detected changes in the expression and/or cooperative or antagonist role of Decorin, Osteocalcin, Osteopontin, and Bone Sialoprotein-2 indicate the deep impact of these NCPs on collagen features of OP bone. Overall, our strategy may represent a starting point for designing targeted clinical strategies aimed at bone mass preservation and sustain the FTIRI translational capability as upcoming support for traditional diagnostic methods.


Assuntos
Osteopontina , Osteoporose , Colágeno , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Cabeça do Fêmur/química , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/patologia , Análise de Fourier , Humanos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Osteocalcina/análise , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina , Osteopontina/genética , Osteopontina/metabolismo , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Fator de Crescimento Transformador beta/metabolismo
11.
Trends Microbiol ; 30(5): 452-465, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34656395

RESUMO

Mitochondria control various processes that are integral to cellular and organismal homeostasis, including Ca2+ fluxes, bioenergetic metabolism, and cell death. Perhaps not surprisingly, multiple pathogenic bacteria have evolved strategies to subvert mitochondrial functions in support of their survival and dissemination. Here, we discuss nonimmunological pathogenic mechanisms that converge on the ability of bacteria to control the mitochondrial compartment of host cells.


Assuntos
Listeria monocytogenes , Mitocôndrias , Metabolismo Energético , Homeostase
14.
Methods Mol Biol ; 2310: 113-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34096002

RESUMO

Mitochondria are dynamic organelles that participate in a broad array of molecular functions within the cell. They are responsible for maintaining the appropriate energetic levels and control the cellular homeostasis throughout the generation of intermediary metabolites. Preserving a healthy and functional mitochondrial population is of fundamental importance throughout the life of the cells under pathophysiological conditions. Hence, cells have evolved fine-tuned mechanisms of quality control that help to preserve the right amount of functional mitochondria to meet the demand of the cell. The specific recycling of mitochondria by autophagy, termed mitophagy, represents the primary contributor to mitochondrial quality control. During this process, damaged or unnecessary mitochondria are recognized and selectively degraded. In the past few years, the knowledge in mitophagy has seen rapid progress, and a growing body of evidence confirms that mitophagy holds a central role in controlling cellular functions and the progression of various human diseases.In this chapter, we will discuss the pathophysiological roles of mitophagy and provide a general overview of the current methods used to monitor and quantify mitophagy. We will also outline the main established approaches to investigate the mitochondrial function, metabolism, morphology, and protein damage.


Assuntos
Doenças Cardiovasculares/patologia , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Animais , Biomarcadores/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Linhagem Celular , Metabolismo Energético , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transfecção
15.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099564

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.


Assuntos
Antipsicóticos/uso terapêutico , Autofagia , Mitofagia , Esclerose Múltipla/tratamento farmacológico , Animais , Antipsicóticos/farmacologia , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/sangue , Proteínas Relacionadas à Autofagia/líquido cefalorraquidiano , Axônios/efeitos dos fármacos , Axônios/metabolismo , Biomarcadores/metabolismo , Clozapina/farmacologia , Citocinas/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Haloperidol/farmacologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/fisiopatologia , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
Cell Rep ; 35(11): 109252, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133926

RESUMO

Heme is an iron-containing porphyrin of vital importance for cell energetic metabolism. High rates of heme synthesis are commonly observed in proliferating cells. Moreover, the cell-surface heme exporter feline leukemia virus subgroup C receptor 1a (FLVCR1a) is overexpressed in several tumor types. However, the reasons why heme synthesis and export are enhanced in highly proliferating cells remain unknown. Here, we illustrate a functional axis between heme synthesis and heme export: heme efflux through the plasma membrane sustains heme synthesis, and implementation of the two processes down-modulates the tricarboxylic acid (TCA) cycle flux and oxidative phosphorylation. Conversely, inhibition of heme export reduces heme synthesis and promotes the TCA cycle fueling and flux as well as oxidative phosphorylation. These data indicate that the heme synthesis-export system modulates the TCA cycle and oxidative metabolism and provide a mechanistic basis for the observation that both processes are enhanced in cells with high-energy demand.


Assuntos
Ciclo do Ácido Cítrico , Heme/biossíntese , Fosforilação Oxidativa , Animais , Transporte Biológico , Células CACO-2 , Heme/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Receptores Virais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
iScience ; 24(4): 102324, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33889820

RESUMO

Mitochondria are key organelles inside the cell that house a wide range of molecular pathways involved in energy metabolism, ions homeostasis, and cell death. Several databases characterize the different mitochondrial aspects and thus support basic and clinical research. Here we present MitopatHs, a web-based data set that allows navigating among the biochemical signaling pathways (PatHs) of human (H) mitochondria (Mito). MitopatHs is designed to visualize and comprehend virtually all types of pathways in two complementary ways: a logical view, where the sequence of biochemical reactions is presented as logical deductions, and an intuitive graphical visualization, which enables the examination and the analysis of each step of the pathway. MitopatHs is a manually curated, open access and collaborative tool, whose goal is to enable the visualization and comprehension of complicated molecular routes in an easy and fast way.

19.
Arch Biochem Biophys ; 700: 108790, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33549528

RESUMO

Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused in the 95% of cases by mutations in the X-linked MECP2 gene, affecting almost exclusively females. While the genetic basis of RTT is known, the exact pathogenic mechanisms that lead to the broad spectrum of symptoms still remain enigmatic. Alterations in the redox homeostasis have been proposed among the contributing factors to the development and progression of the syndrome. Mitochondria appears to play a central role in RTT oxidative damage and a plethora of mitochondrial defects has already been recognized. However, mitochondrial dynamics and mitophagy, which represent critical pathways in regulating mitochondrial quality control (QC), have not yet been investigated in RTT. The present work showed that RTT fibroblasts have networks of hyperfused mitochondria with morphological abnormalities and increased mitochondrial volume. Moreover, analysis of mitophagic flux revealed an impaired PINK1/Parkin-mediated mitochondrial removal associated with an increase of mitochondrial fusion proteins Mitofusins 1 and 2 (MFN1 and 2) and a decrease of fission mediators including Dynamin related protein 1 (DRP1) and Mitochondrial fission 1 protein (FIS1). Finally, challenging RTT fibroblasts with FCCP and 2,4-DNP did not trigger a proper apoptotic cell death due to a defective caspase 3/7 activation. Altogether, our findings shed light on new aspects of mitochondrial dysfunction in RTT that are represented by defective mitochondrial QC pathways, also providing new potential targets for a therapeutic intervention aimed at slowing down clinical course and manifestations in the affected patients.


Assuntos
Apoptose , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Síndrome de Rett/metabolismo , Adolescente , Adulto , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Criança , Dinaminas/genética , Dinaminas/metabolismo , Feminino , Fibroblastos/patologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Síndrome de Rett/genética , Síndrome de Rett/patologia
20.
Eur J Histochem ; 64(4)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272008

RESUMO

A high incidence of heterotopic ossification (HO) has been reported in patients with diffuse idiopathic skeletal hyperostosis (DISH), a metabolic disease characterized by calcifications of entheses at spine and peripheral sites. We performed histological and immunohistochemical analyses in five different HO sites in a patient with DISH to study a possible mutual interaction of bone morphogenetic protein 2 (BMP-2), transforming growth factor beta (TGF-ß), and decorin, crucial for bone mass increasing, matrix calcification, and endochondral bone formation. We speculated that the surgical trauma triggered HO, inducing TGF-ß release at the lesion site. TGF-ß recruits osteoblast precursor cells and determines the overexpression of BMP-2 in the surrounding skeletal muscle, inducing a further osteogenic differentiation, contributing to HO onset.


Assuntos
Hiperostose Esquelética Difusa Idiopática/complicações , Ossificação Heterotópica/etiologia , Idoso , Artroplastia de Quadril/efeitos adversos , Proteína Morfogenética Óssea 2/metabolismo , Decorina/metabolismo , Quadril/patologia , Quadril/cirurgia , Humanos , Hiperostose Esquelética Difusa Idiopática/metabolismo , Hiperostose Esquelética Difusa Idiopática/patologia , Masculino , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA